Detection loophole attacks on semi-device-independent quantum and classical protocols
نویسندگان
چکیده
Semi-device-independent quantum protocols realize information tasks – e.g. secure key distribution, random access coding, and randomness generation – in a scenario where no assumption on the internal working of the devices used in the protocol is made, except their dimension. These protocols offer two main advantages: first, their implementation is often less demanding than fully-device-independent protocols. Second, they are more secure than their device-dependent counterparts. Their classical analogous is represented by random access codes, which provide a general framework for describing one-sided classical communication tasks. We discuss conditions under which detection inefficiencies can be exploited by a malicious provider to fake the performance of semi-device-independent quantum and classical protocols – and how to prevent it.
منابع مشابه
Affine Detection Loophole in Quantum Data-Processing
Here is considered a specific detection loophole, that is relevant not only to testing of quantum nonlocality, but also to some other applications of quantum computations and communications. It is described by a simple affine relation between different quantum “data structures” like pure and mixed state, separable and inseparable one. It is shown also, that due to such relations imperfect devic...
متن کاملDetection-loophole-free test of quantum nonlocality, and applications.
We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first reported experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maxi...
متن کاملSimple and tight device-independent security proofs
Proving security of device-independent (DI) cryptographic protocols has been regarded to be a complex and tedious task. In this work we show that a newly developed tool, the “entropy accumulation theorem” of Dupuis et al. [DFR16], can be effectively applied to give fully general proofs of DI security. At a high level our technique amounts to establishing a reduction to the scenario in which the...
متن کاملProposal for Implementing Device-Independent Quantum Key Distribution based on a Heralded Qubit Amplification
In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is exploited to establish a shared key that is secure independently of the internal workings of the QKD devices. An experimental implementation of DIQKD, however, is still awaited, since hitherto all optical Bell tests are subject to the detection loophole, making the protocol unsecured. In particular, ph...
متن کاملZero-Knowledge Proofs and String Commitments Withstanding Quantum Attacks
The concept of zero-knowledge (ZK) has become of fundamental importance in cryptography. However, in a setting where entities are modeled by quantum computers, classical arguments for proving ZK fail to hold since, in the quantum setting, the concept of rewinding is not generally applicable. Moreover, known classical techniques that avoid rewinding have various shortcomings in the quantum setti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 15 شماره
صفحات -
تاریخ انتشار 2015