Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.
نویسندگان
چکیده
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2-) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
منابع مشابه
Immunological analysis of cell-associated antigens of Bacillus anthracis.
Sera from Hartley guinea pigs vaccinated with a veterinary live spore anthrax vaccine were compared with sera from guinea pigs vaccinated with the human anthrax vaccine, which consists of aluminum hydroxide-adsorbed culture proteins of Bacillus anthracis V770-NP-1R. Sera from animals vaccinated with the spore vaccine recognized two major B. anthracis vegetative cell-associated proteins that wer...
متن کاملPlant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge.
The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to pro...
متن کاملEvaluation the Efficacy of Anthrax Vaccine against Challenge with a Highly Virulent Strain of Bacillus anthracis Isolated from Soil in Sheep, Goats and Guinea Pigs in Iran
Protection of animals immunized against Bacillus anthracis is usually demonstrated by challenging with an appropriate dose of a strain of Bacillus anthracis that is lethal to unvaccinated animals inoculated at the same time. In this study the protective efficacy in anthrax vaccine (34F2 sterne strain spore) was evaluated in sheep, goats and guinea pigs challenged with subcutaneous inoculation...
متن کاملImmunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection
Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans...
متن کاملInfluence of body weight on response of Fischer 344 rats to anthrax lethal toxin.
Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxins
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2016