Preparation and Properties of a Novel Microcrystalline Cellulose-Filled Composites Based on Polyamide 6/High-Density Polyethylene
نویسندگان
چکیده
In the present study, lithium chloride (LiCl) was utilized as a modifier to reduce the melting point of polyamide 6 (PA6), and then 15 wt % microcrystalline cellulose (MCC) was compounded with low melting point PA6/high-density polyethylene (HDPE) by hot pressing. Crystallization analysis revealed that as little as 3 wt % LiCl transformed the crystallographic forms of PA6 from semi-crystalline to an amorphous state (melting point: 220 °C to none), which sharply reduced the processing temperature of the composites. LiCl improved the mechanical properties of the composites, as evidenced by the fact that the impact strength of the composites was increased by 90%. HDPE increased the impact strength of PA6/MCC composites. In addition, morphological analysis revealed that incorporation of LiCl and maleic anhydride grafted high-density polyethylene (MAPE) improved the interfacial adhesion. LiCl increased the glass transition temperature of the composites (the maximum is 72.6 °C).
منابع مشابه
Mechanical, Morphological, and Thermal Properties of Nutshell and Microcrystalline Cellulose Filled High- Density Polyethylene Composites
Effects of nutshell fiber loadings of 30 wt.% and MCC loadings up to 15 wt.% on some properties of high-density polyethylene composites (HDPE) were investigated. The composites were manufactured by a single screw extruder and injection molding. The experimental composite samples were tested for their mechanical performance including tensile strength, tensile modulus, flexural strength, flexural...
متن کاملChemical Modification of Microcrystalline Cellulose: Improvement of Barrier Surface Properties to enhance Surface Interactions with some synthetic polymers for Biodegradable Packaging Material Processing and Applications in Textile, Food and Pharmaceutical Industry
Gaseous acetylation of microcrystalline cellulose (MCC) was carried out to modify its chemical and physical properties and at the same time to preserve the morphology of cellulose microfibrils. Spectroscopic analysis of the samples was indicative of the success of the reaction as indicated by FT-IR and H-nmr studies. The chemically modified microcrystalline cellulose (MCC) were blended with hig...
متن کاملDynamic Mechanical Analysis of Compatibilizer Effect on the Mechanical Properties of Wood Flour-High-Density Polyethylene Composites
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents without the compatibilize...
متن کاملPreparation of Organo Nanoclay Incorporated Polyamide/ Melamine Cyanurate/Nanoclay Composites and Study on Thermal and Mechanical Behaviours
This study focuses on achieving high stiffness/strength and good FR characteristic of nylon 66/MCA/NC nanocomposites, prepared via melt compounding by twin screw extruder. A synergistic effect of flame retardant systems based on melamine cyanurate and zinc borate on the flammability and mechanical behaviours of crysnanoclay reinforced nylon 66 nanocomposites have been reported. Mechanical test ...
متن کاملEffect of Environmental Conditions on the Mechanical Properties and Fungal Degradation of Polycaprolactone/ Microcrystalline Cellulose/Wood Flour Composites
Polycaprolactone (PCL) filled with microcrystalline cellulose (MCC), wood flour (WF), or both were characterized before and after exposure to various environmental conditions for 60 days. PCL/WF composites had the greatest tensile strength and modulus compared to neat PCL or PCL composites containing MCC. Electron microscopy indicated better adhesion between WF particles and PCL than between MC...
متن کامل