Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers
نویسندگان
چکیده
Composite nanofibers of biopolymers and inorganic materials have been widely explored as tissue engineering scaffolds because of their superior structural, mechanical and biological properties. In this study, magnesium ferrite (Mg-ferrite) based composite nanofibers were synthesized using an electrospinning technique. Mg-ferrite nanoparticles were first synthesized using the reverse micelle method, and then blended in a mixture of polycaprolactone (PCL), a synthetic polymer, and Aloe vera, a natural polymer, to create magnetic nanofibers by electrospinning. The morphology, structural and magnetic properties, and cellular compatibility of the magnetic nanofibers were analyzed. Mg-ferrite/PCL/Aloe vera nanofibers showed good uniformity in fiber morphology, retained their structural integrity, and displayed magnetic strength. Experimental results, using cell viability assay and scanning electron microscopy imaging showed that magnetic nanofibers supported 3T3 cell viability. We believe that the new composite nanofibrous membranes developed in this study have the ability to mimic the physical structure and function of tissue extracellular matrix, as well as provide the magnetic and soluble metal ion attributes in the scaffolds with enhanced cell attachment, and thus improve tissue regeneration.
منابع مشابه
Various parameters in the preparation of chitosan/polyethylene oxide electrospun nanofibers containing Aloe vera extract for medical applications
Objective(s): The present study aimed to fabricate chitosan/polyethylene oxide (CS/PEO) electrospun nanofibers loaded with Aloe vera extract for biomedical applications. The polymer-to-extract ratio and electrospinning parameters (applied voltage and nozzle-to-collector distance) were evaluated in order to optimize the process of nanofiber fabrication. Materials and Methods: The character...
متن کاملFabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications
Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolac...
متن کاملCharacterization and optimization of using calendula offlcinalis extract in fabrication of polycaprolactone-gelatin electrospun nanofibers for wound dressing applications
Wound dressing applications of nanofibers is a progressive filed of research which could be enhanced by using medicinal plant extract to bring some more advantages. Here we optimized the electrospinning method for fabrication of polycaprolactone-gelatin mixed with a medicinal plant extract, calendula offlcinalis. Characterization techniques including Fourier-transform infrared spectroscopy (FTI...
متن کاملFabrication of Biodegradable PCL Particles as well as PA66 Nanofibers via Air-Sealed Centrifuge Electrospinning (ASCES)
This study presents a method for fabrication of ultrafine polymeric nanofibers as well as nano/micro particles utilizing centrifugal and electrostatic forces simultaneously. To reduce the diameter and variety of nanofibers produced from solid state polymerized PA66, a unique electrocentrifuge spinning device was utilized with a rotating nozzle and collector, while the fabrication process (spinn...
متن کاملAloe Vera for Tissue Engineering Applications
Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biode...
متن کامل