Structural characterization of nanofiber silk produced by embiopterans (webspinners).

نویسندگان

  • J Bennett Addison
  • Thomas M Osborn Popp
  • Warner S Weber
  • Janice S Edgerly
  • Gregory P Holland
  • Jeffery L Yarger
چکیده

Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species Antipaluria urichi and Aposthonia ceylonica are studied in this work. Electron microscopy images show that the fibers are about 90-100 nm in diameter, making webspinner silks among the finest of all known animal silks. Structural studies reveal that the silk protein core is dominated by β-sheet structures, and that the protein core is coated with a hydrophobic alkane-rich surface coating. FTIR spectra of native embiid silk shows characteristic alkane CH2 stretchings near 2800-2900 cm-1, which decrease approximately 50% after washing the silk with 2 : 1 CHCl3 : MeOH. Furthermore, 13C ssNMR data shows a significant CH2 resonance that is strongly affected by the presence of water, supporting the idea that the silk fibers are coated with a hydrocarbon-rich layer. Such a layer is likely used to protect the colonies from rain. FTIR data also suggests that embiid silks are dominated by β-sheet secondary structures similar to spider and silkworm silk fibers. NMR data confirms the presence of β-sheet nanostructures dominated by serine-rich repetitive regions. A deconvolution of the serine Cβ NMR resonance reveals that approximately 70% of all seryl residues exist in a β-sheet structure. This is consistent with WAXD results that suggest webspinner silks are 70% crystalline, which is the highest crystalline fraction reported for any animal silks. The work presented here provides a molecular level structural picture of silk fibers produced by webspinners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of silk spun by the embiopteran, Antipaluria urichi.

Silks are renowned for being lightweight materials with impressive mechanical properties. Though moth and spider silks have received the most study, silk production has evolved in many other arthropods. One insect group that has been little investigated is Embioptera (webspinners). Embiopterans produce silk from unique tarsal spinning structures during all life stages. We characterize the molec...

متن کامل

The spinning apparatus of webspinners – functional-morphology, morphometrics and spinning behaviour

Webspinners (Insecta: Embioptera) have a distinctly unique behaviour with related morphological characteristics. Producing silk with the basitarsomeres of their forelegs plays a crucial role in the lives of these insects--providing shelter and protection. The correlation between body size, morphology and morphometrics of the spinning apparatus and the spinning behaviour of Embioptera was invest...

متن کامل

Rheological characterization of hydrogels formed by recombinantly produced spider silk

Many fibrous proteins such as spider silks exhibit impressive mechanical properties and are highly biocompatible leading to many potential biomaterial applications. For applications such as tissue engineering, polymer hydrogels have been proposed as an effective means of producing porous but stable scaffolds. Here, nanofiber-based hydrogels were produced from engineered and recombinantly produc...

متن کامل

Comparison of embiopteran silks reveals tensile and structural similarities across Taxa.

Embioptera is a little studied order of widely distributed, but rarely seen, insects. Members of this group, also called embiids or webspinners, all heavily rely on silken tunnels in which they live and reproduce. However, embiids vary in their substrate preferences and these differences may result in divergent silk mechanical properties. Here, we present diameter measurements, tensile tests, a...

متن کامل

Preparation and characterization of CS/ PEO/ cefazolin nanofibers with in vitro and in vivo testing

Objective(S): Electrospinning of chitosan/polyethylene oxide (CS/PEO) nanofibers with the addition of cefazolin to create nanofibers with antimicrobial properties were examined. Methods: Polymeric nanofibers including CS/PEO and CS/PEO /cefazolin, were produced by electrospinning method. The range of nanofiber was 60-100 nm in diameter and measured with I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RSC advances

دوره 4 78  شماره 

صفحات  -

تاریخ انتشار 2014