Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets
نویسندگان
چکیده
In this paper we discuss second order optimality conditions in optimization problems subject to abstract constraints. Our analysis is based on various concepts of second order tangent sets and parametric duality. We introduce a condition, called second order regularity, under which there is no gap between the corresponding second order necessary and second order sufficient conditions. We show that the second order regularity condition always holds in the case of semidefinite programming.
منابع مشابه
A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms
We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new...
متن کاملSecond-order lower radial tangent derivatives and applications to set-valued optimization
We introduce the concepts of second-order radial composed tangent derivative, second-order radial tangent derivative, second-order lower radial composed tangent derivative, and second-order lower radial tangent derivative for set-valued maps by means of a radial tangent cone, second-order radial tangent set, lower radial tangent cone, and second-order lower radial tangent set, respectively. Som...
متن کاملControl and Cybernetics
Abstract: The paper deals with optimal control problems for semilinear elliptic and parabolic PDEs subject to pointwise state constraints. The main issue is that the controls are taken from a restricted control space. In the parabolic case, they are R -vectorvalued functions of time, while they are vectors of R in elliptic problems. Under natural assumptions, firstand second-order sufficient op...
متن کاملA second-order optimality condition with first and second-order complementarity associated to global convergence of algorithms
We develop a new notion of second-order complementarity with respect to the tangent subspace associated to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a ...
متن کاملThe Second Order Directional Derivative of Symmetric Matrix-valued Functions∗
This paper focuses on the study of the second-order directional derivative of a symmetric matrix-valued function of the form F (X) = Pdiag[f(λ1(X)), · · · , f(λn(X))]P . For this purpose, we first adopt a direct way to derive the formula for the second-order directional derivative of any eigenvalue of a matrix in Torki [13]; Second, we establish a formula for the (parabolic) second-order direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 9 شماره
صفحات -
تاریخ انتشار 1999