Hydrogen bonding and chemical shift assignments in carbazole functionalized isocyanides from solid-state NMR and first-principles calculations.

نویسندگان

  • Chandrakala M Gowda
  • Filipe Vasconcelos
  • Erik Schwartz
  • Ernst R H van Eck
  • Martijn Marsman
  • Jeroen J L M Cornelissen
  • Alan E Rowan
  • Gilles A de Wijs
  • Arno P M Kentgens
چکیده

Carbazole functionalized polyisocyanides are known to exhibit excellent electronic properties (E. Schwartz, et al., Chemistry of Materials, 2010, 22, 2597). The functionalities and properties of such materials crucially depend on the organization and stability of the polymer structure. We combine solid-state Nuclear Magnetic Resonance (NMR) experiments with first-principles calculations of isotropic chemical shifts, within the recently developed converse approach, to rationalize the origin of isotropic chemical shifts in the crystalline monomer l-isocyanoalanine 2-(9H-carbazol-9-yl) ethyl amide (monomer 1) and thereby gain insight into the structural organization of its polymer (polymer 2). The use of state-of-the-art solid-state NMR experiments combined with Density Functional Theory (DFT) based calculations allows an unambiguous assignment of all proton and carbon resonances of the monomer. We were able to identify the structure stabilising interactions in the crystal and understand the influence of the molecular packing in the crystal structure on the chemical shift data observed in the NMR spectra. Here the Nuclear Independent Chemical Shift (NICS) approach allows discriminating between 'physical' interactions amongst neighboring molecules such as ring-current effects and 'chemical' interactions such as hydrogen bonding. This analysis reveals that the isocyanide monomer is stabilized by multiple hydrogen bonds such as a bifurcated hydrogen bond involving -N-H, -C-H and O=C- moieties and Ar-H···C≡N- hydrogen bonding (Ar = aromatic group). Based on the geometrical arrangement it is postulated that the carbazole units are involved in the weak σ-π interactions giving rise to a Herringbone packing of the molecules. The chemical shift analysis of the polymer spectra readily establishes the existence of N-H···O=C hydrogen bonds despite the limited resolution exhibited by the polymer spectra. It is also elucidated that the relative arrangement of the carbazole units in the polymer differs significantly from that of the monomer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.

In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...

متن کامل

Solid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.

Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of i...

متن کامل

Insight into Hydrogen Bonding of Uranyl Hydroxide Layers and Capsules by Use of H Magic-Angle Spinning NMR Spectroscopy

Solid-state H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with twodimensional (2D) double-quantum (DQ) H−H NMR correlation experiments revealing strong d...

متن کامل

NMR spectra of Azobenzene-bridged calix [8] arene complexes by ab initio hartree-fock calculations as nanostructure compound

Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes...

متن کامل

NMR spectra of Azobenzene-bridged calix [8] arene complexes by ab initio hartree-fock calculations as nanostructure compound

Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 28  شماره 

صفحات  -

تاریخ انتشار 2011