Lagrange Interpolation Learning Particle Swarm Optimization
نویسندگان
چکیده
In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles' diversity and thus preventing premature convergence. However, CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel algorithm called LILPSO. First, this algorithm introduced a Lagrange interpolation method to perform a local search for the global best point (gbest). Second, to gain a better exemplar, one gbest, another two particle's historical best points (pbest) are chosen to perform Lagrange interpolation, then to gain a new exemplar, which replaces the CLPSO's comparison method. The numerical experiments conducted on various functions demonstrate the superiority of this algorithm, and the two methods are proven to be efficient for accelerating the convergence without leading the particle to premature convergence.
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملSolving Unit Commitment Problem Using Chemo-tactic PSO–DE Optimization Algorithm Combined with Lagrange Relaxation
This paper presents Chemo-tactic PSO-DE (CPSO-DE) optimization algorithm combined with Lagrange Relaxation method (LR) for solving Unit Commitment (UC) problem. The proposed approach employs Chemo-tactic PSO-DE algorithm for optimal settings of Lagrange multipliers. It provides high-quality performance and reaches global solution and is a hybrid heuristic algorithm based on Bacterial Foraging O...
متن کاملAn Improved Particle Swarm Optimization Algorithm for Pattern Synthesis of Phased Arrays
In this paper an improved particle swarm optimization algorithm (IPSO) for electromagnetic applications is proposed. In order to overcome the drawbacks of standard PSO, some improved mechanisms for velocity updating, the exceeding boundary control, global best perturbation and the simplified quadratic interpolation (SQI) operator are adopted. To show the effectiveness of the proposed algorithm,...
متن کاملTime-jerk optimal trajectory planning of a 7-DOF redundant robot
In order to improve the efficiency and smoothness of a robot and reduce its vibration, an algorithm called the augmented Lagrange constrained particle swarm optimization (ALCPSO), which combines constrained particle swarm optimization with the augmented Lagrange multiplier method to realize time-jerk (defined as the derivative of the acceleration) optimal trajectory planning is proposed. Kinema...
متن کاملInduction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization
This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was impleme...
متن کامل