Antitumor activity of monomethoxy poly(ethylene glycol)-poly (ε-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma.

نویسندگان

  • Lan Zheng
  • Maling Gou
  • Shengtao Zhou
  • Tao Yi
  • Qian Zhong
  • Zhengyu Li
  • Xiang He
  • Xiancheng Chen
  • Lina Zhou
  • Yuquan Wei
  • Zhiyong Qian
  • Xia Zhao
چکیده

Doxorubicin (Dox) is one of the most commonly used and highly effective antineoplastic agents, but the clinical application of this broad spectrum drug is largely hampered by its poor stability and serious toxicity to normal tissues. Hence, it is essential to improve the therapeutic effect and decrease the systematic toxicity for the administration of doxorubicin. In our study, doxorubicin was incorporated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle by a self-assembly method. The cytotoxicity and cellular uptake efficiency of Dox-loaded MPEG-PCL (Dox/MPEG-PCL) micelle against B16-F10 murine melanoma cells was examined by the methylthiazoltetrazolium (MTT) test and flow cytometry. The antitumor activity of Dox/MPEG-PCL was evaluated in C57BL/6 mice injected subcutaneously with B16-F10 cells. Toxicity was evaluated in tumor-free mice. Meanwhile, tumor proliferation, intratumoal angiogenesis and apoptotic cells were evaluated by PCNA, CD31 staining and TUNEL assay, respectively. Encapsulation of doxorubicin in MPEG-PCL micelle improved the cytotoxicity of doxorubicin and enhanced its cellular uptake on B16-F10 cell in vitro. Administration of Dox/MPEG-PCL micelle resulted in significant inhibition (75% maximum inhibition relative to controls) in the growth of B16-F10 tumor xenografts and prolonged the survival of the treated mice (P<0.05). These anti-tumor responses were associated with marked increase of tumor apoptosis and notable reduction of cell proliferation and intratumoral microvessel density (P<0.05). The system toxicity also decreased in the Dox/MPEG-PCL group compared with free doxorubicin group. Our data indicate that the encapsulation of doxorubicin in MPEG-PCL micelle improved the anti-tumor activity in vivo without conspicuous systemic toxic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer

Star-shaped polymer micelles have good stability against dilution with water, showing promising application in drug delivery. In this work, biodegradable micelles made from star-shaped poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) copolymer were prepared and used to deliver doxorubicin (Dox) in vitro and in vivo. First, an acrylated monomethoxy poly (ethylene glycol)-poly(ε-caprolactone)...

متن کامل

Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers

Amphiphilic block copolymers have attracted a great deal of attention in drug delivery systems. In this work, a series of monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone-co-D,L-lactide) (MPEG-PCLA) copolymers with variable composition of poly (ε-caprolactone) (PCL) and poly (D,L-lactide) (PDLLA) were prepared via ring-opening copolymerization of ε-CL and D,L-LA in the presence of MPEG a...

متن کامل

Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin

Luteolin (Lu) is one of the flavonoids with anticancer activity, but its poor water solubility limits its use clinically. In this work, we used monomethoxy poly(ethylene glycol)-poly(e-caprolactone) (MPEG-PCL) micelles to encapsulate Lu by a self-assembly method, creating a water-soluble Lu/MPEG-PCL micelle. These micelles had a mean particle size of 38.6 ± 0.6 nm (polydispersity index = 0.16 ±...

متن کامل

Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to ...

متن کامل

Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

The triblock copolymer is composed of two identical hydrophilic segments: Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε‑caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG‑COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2011