Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class

نویسنده

  • Pascal Fontaine
چکیده

The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is the class of formulas that, when written in prenex normal form, have an ∃∀ quantifier prefix and do not contain any function symbols. This class is decidable. We show here that BSR theories can furthermore be combined with another disjoint decidable theory, so that we obtain a decision procedure for quantifier-free formulas in the combination of the BSR theory and another decidable theory. The classical Nelson-Oppen combination scheme requires theories to be stably-infinite, ensuring that, if a model is found for both theories in the combination, models agree on cardinalities and a global model can be built. We show that combinations with BSR theories can be much more permissive, even though BSR theories are not always stably-infinite. We state that it is possible to describe exactly all the (finite or infinite) cardinalities of the models of a given BSR theory. For the other theory, it is thus only required to be able to decide if there exists a model of a given cardinality. With this result, it is notably possible to use some set operators, operators on relations, orders — any operator that can be expressed by a set of BSR formulas — together with the usual objects of SMT solvers, notably integers, reals, uninterpreted symbols, enumerated types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernays-Schönfinkel-Ramsey with Simple Bounds is NEXPTIME-complete

Linear arithmetic extended with free predicate symbols is undecidable, in general. We show that the restriction of linear arithmetic inequations to simple bounds extended with the Bernays-Schönfinkel-Ramsey free first-order fragment is decidable and NEXPTIME-complete. The result is almost tight because the Bernays-Schönfinkel-Ramsey fragment is undecidable in combination with linear difference ...

متن کامل

Combining Theories: The Ackerman and Guarded Fragments

Combination of decision procedures is at the heart of Satisfiability Modulo Theories (SMT) solvers. It provides ways to compose decision procedures for expressive languages which mix symbols from various decidable theories. Typical combinations include (linear) arithmetic, uninterpreted symbols, arrays operators, etc. In [7] we showed that any first-order theory from the Bernays-Schönfinkel-Ram...

متن کامل

Combinations of Theories for Decidable Fragments of First-Order Logic

The design of decision procedures for first-order theories and their combinations has been a very active research subject for thirty years; it has gained practical importance through the development of SMT (satisfiability modulo theories) solvers. Most results concentrate on combining decision procedures for data structures such as theories for arrays, bitvectors, fragments of arithmetic, and u...

متن کامل

Reasoning in the Bernays-Schönfinkel-Ramsey Fragment of Separation Logic

Separation Logic (SL) is a well-known assertion language used in Hoare-style modular proof systems for programs with dynamically allocated data structures. In this paper we investigate the fragment of first-order SL restricted to the Bernays-Schönfinkel-Ramsey quantifier prefix ∃∗∀∗, where the quantified variables range over the set of memory locations. When this set is uninterpreted (has no as...

متن کامل

Combining Theories with Shared Set Operations

Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional connectives ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007