Connected Graph Searching 1 2
نویسندگان
چکیده
In the graph searching game the opponents are a set of searchers and a fugitive in a graph. The searchers try to capture the fugitive by applying some sequence of moves that include placement, removal, or sliding of a searcher along an edge. The fugitive tries to avoid capture by moving along unguarded paths. The search number of a graph is the minimum number of searchers required to guarantee the capture of the fugitive. In this paper, we initiate the study of this game under the natural restriction of connectivity where we demand that in each step of the search the locations of the graph that are clean (i.e. non-accessible to the fugitive) remain connected. We give evidence that many of the standard mathematical tools used so far in classic graph searching fail under the connectivity requirement. We also settle the question on “the price of connectivity”, that is, how many searchers more are required for searching a graph when the connectivity demand is imposed. We make estimations of the price of connectivity on general graphs and we provide tight bounds for the case of trees. In particular, for an n-vertex graph the ratio between the connected Results of this paper have appeared in the proceedings of the 14th ACM Symposium on Parallel Algorithm and Architecture (SPAA 2002), the 29th Workshop on Graph Theoretic Concepts in Computer Science (WG 2003), the 13th SIAM Conference on Discrete Mathematics, (DM 2006), and the 7th Latin American Theoretical Informatics Symposium (LATIN 2006). Paola Flocchini and Nicola Santoro are supported in part by NSERC Discovery Grant; Pierre Fraigniaud is supported by the ANR projects ALADDIN and PROSE, and by the INRIA project GANG; Nicolas Nisse is supported by the ANR project AGAPE; Dimitrios M. Thilikos is supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National and Kapodistrian University of Athens (project code: 70/4/8757). Preprint submitted to Elsevier August 22, 2012 ha l-0 07 41 94 8, v er si on 1 15 O ct 2 01 2 Author manuscript, published in "Information and Computation 219 (2012) 1-16"
منابع مشابه
Connected and Internal Graph Searching
This paper is concerned with the graph searching game. The search number s(G) of a graph G is the smallest number of searchers required to “clear” G. A search strategy is monotone (m) if no recontamination ever occurs. It is connected (c) if the set of clear edges always forms a connected subgraph. It is internal (i) if the removal of searchers is not allowed. The difficulty of the “connected” ...
متن کاملMonotony Properties of Connected Visible Graph Searching
Search games are attractive for their correspondence with classical width parameters. For instance, the invisible search number (a.k.a. node search number) of a graph is equal to its pathwidth plus 1, and the visible search number of a graph is equal to its treewidth plus 1. The connected variants of these games ask for search strategies that are connected, i.e., at every step of the strategy, ...
متن کاملFrom Pathwidth to Connected Pathwidth
It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of ‘bags’ in the input path decomp...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کامل