On the wettability transparency of graphene-coated silicon surfaces.

نویسندگان

  • Bladimir Ramos-Alvarado
  • Satish Kumar
  • G P Peterson
چکیده

In order to better understand the behavior and governing characteristics of the wetting transparency phenomenon observed in graphene-coated surfaces, molecular dynamics simulations were coupled with a theoretical model. Graphene-coated silicon was selected for this analysis, due to potential applications of hybrid silicon-graphene materials as detectors in aqueous environments. The results indicate good agreement between the theory and simulations at the macroscopic conditions required to observe wetting transparency. A microscopic analysis was also conducted in order to identify the parameters, such as the interaction potential energy landscape and the interfacial liquid structure that govern the wetting behavior of graphene-coated surfaces. The interfacial liquid structure was found to be different between uncoated Si(100) and the graphene-coated version and very similar between uncoated Si(111) and the graphene-coated version. However, the concentration of liquid particles for both silicon surfaces was found to be very similar under transparent wetting conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wetting transparency of graphene.

We report that graphene coatings do not significantly disrupt the intrinsic wetting behaviour of surfaces for which surface-water interactions are dominated by van der Waals forces. Our contact angle measurements indicate that a graphene monolayer is wetting-transparent to copper, gold or silicon, but not glass, for which the wettability is dominated by short-range chemical bonding. With increa...

متن کامل

Bioinspired shape-memory graphene film with tunable wettability

Functional materials with specific surface wettability play an important role in a wide variety of areas. Inspired by nature's Nepenthes pitcher plant, we present a novel slippery film with tunable wettability based on a shape-memory graphene sponge. The porous graphene sponge coated with shape-memory polymer was used to lock in inert lubricants and construct slippery surfaces to repel differen...

متن کامل

Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride

The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet t...

متن کامل

Solving the Controversy on the Wetting Transparency of Graphene

Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and el...

متن کامل

Nucleate boiling performance on nano/microstructures with different wetting surfaces

A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 1  شماره 

صفحات  -

تاریخ انتشار 2016