Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens

نویسندگان

  • Jun Feng
  • Yanyan Gu
  • Yufen Quan
  • Weixia Gao
  • Yulei Dang
  • Mingfeng Cao
  • Xiaoyun Lu
  • Yi Wang
  • Cunjiang Song
  • Shufang Wang
چکیده

BACKGROUND Sucrose is an naturally abundant and easily fermentable feedstock for various biochemical production processes. By now, several sucrose utilization pathways have been identified and characterized. Among them, the pathway consists of sucrose permease and sucrose phosphorylase is an energy-conserving sucrose utilization pathway because it consumes less ATP when comparing to other known pathways. Bacillus amyloliquefaciens NK-1 strain can use sucrose as the feedstock to produce poly-γ-glutamic acid (γ-PGA), a highly valuable biopolymer. The native sucrose utilization pathway in NK-1 strain consists of phosphoenolpyruvate-dependent phosphotransferase system and sucrose-6-P hydrolase and consumes more ATP than the energy-conserving sucrose utilization pathway. RESULTS In this study, the native sucrose utilization pathway in NK-1 was firstly deleted and generated the B. amyloliquefaciens 3Δ strain. Then four combination of heterologous energy-conserving sucrose utilization pathways were constructed and introduced into the 3Δ strain. Results demonstrated that the combination of cscB (encodes sucrose permease) from Escherichia coli and sucP (encodes sucrose phosphorylase) from Bifidobacterium adolescentis showed the highest sucrose metabolic efficiency. The corresponding mutant consumed 49.4% more sucrose and produced 38.5% more γ-PGA than the NK-1 strain under the same fermentation conditions. CONCLUSIONS To our best knowledge, this is the first report concerning the enhancement of the target product production by introducing the heterologous energy-conserving sucrose utilization pathways. Such a strategy can be easily extended to other microorganism hosts for reinforced biochemical production using sucrose as substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum

BACKGROUND Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some uni...

متن کامل

Construction of a Bacillus amyloliquefaciens strain for high purity levan production.

Bacillus amyloliquefaciens NK-1 has the potential to produce levan and poly-gamma-glutamic acid (γ-PGA) simultaneously. However, it is not possible to purify each single product from the same strain because the extraction process is identical. We deleted the pgs cluster (for γ-PGA synthesis) from the NK-1 strain and constructed a γ-PGA-deficient NK-ΔLP strain. Nuclear magnetic results showed th...

متن کامل

Mutations in genes encoding antibiotic substances increase the synthesis of poly‐γ‐glutamic acid in Bacillus amyloliquefaciens LL3

Poly-γ-glutamic acid (γ-PGA) is an important natural biopolymer that is used widely in fields of foods, medicine, cosmetics, and agriculture. Several B. amyloliquefaciens LL3 mutants were constructed to improve γ-PGA synthesis via single or multiple marker-less in-frame deletions of four gene clusters (itu, bae, srf, and fen) encoding antibiotic substances. γ-PGA synthesis by the Δsrf mutant sh...

متن کامل

Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens

Microbial levan is an important biopolymer with considerable potential in food and medical applications. Bacillus amyloliquefaciens NK-ΔLP strain can produce high-purity, low-molecular-weight levan, but production is relatively low. To enhance the production of levan, six extracellular protease genes (bpr, epr, mpr, vpr, nprE and aprE), together with the tasA gene (encoding the major biofilm ma...

متن کامل

Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction

We constructed a metabolically engineered glutamate-independent Bacillus amyloliquefaciens strain with considerable γ-PGA production. It was carried out by double-deletion of the cwlO gene and epsA-O cluster, as well as insertion of the vgb gene in the bacteria chromosome. The final generated strain NK-PV elicited the highest production of γ-PGA (5.12 g l(-1)), which was 63.2% higher than that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017