A multiplicative updating algorithm for training support vector machine
نویسندگان
چکیده
Support Vector Machines nd maximal margin hyperplanes in a high dimensional feature space, represented as a sparse linear combination of training points. Theoretical results exist which guarantee a high generalization performance when the margin is large or when the representation is very sparse. Multiplicative-Updating algorithms are a new tool for perceptron learning which are guaranteed to converge rapidly when the target concept is sparse. In this paper we present a Multiplicative-Updating algorithm for training Support Vector Machines which combines the generalization power provided by VC theory with the convergence properties of multiplicative algorithms.
منابع مشابه
Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملMultiplicative Updatings for Support-vector Learning Produced as Part of the Esprit Working Group in Neural and Computational Learning Ii, Neurocolt2 27150
Support Vector machines nd maximal margin hyperplanes in a high dimensional feature space. Theoretical results exist which guarantee a high generalization performance when the margin is large or when the number of support vectors is small. Multiplicative-Updating algorithms are a new tool for perceptron learning whose theoretical properties are well studied. In this work we present a Multiplica...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999