Novel regulation of cardiac Na pump via phospholemman.
نویسندگان
چکیده
As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].
منابع مشابه
Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.
In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...
متن کاملPhospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump.
Phospholemman (PLM) or FXYD1 is a major cardiac myocyte phosphorylation target upon adrenergic stimulation. Prior immunoprecipitation and functional studies suggest that phospholemman associates with the Na/K-pump (NKA) and mediates adrenergic Na/K-pump regulation. Here, we tested whether the NKA-PLM interaction is close enough to allow fluorescence resonance energy transfer (FRET) between cyan...
متن کاملProfound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes
Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activ...
متن کاملPhospholemman: a new force in cardiac contractility.
The control of intracellular Na levels has long been known to be a crucial part of the regulation of cardiac contractility and the treatment of heart failure. Cardiac glycosides have been used to improve the symptoms of heart failure since William Withering published trials of a foxglove extract obtained from a gypsy woman in the late 1700’s. The active ingredients, digitalis and digoxin, were ...
متن کاملCardiac hypertrophy in mice expressing unphosphorylatable phospholemman
AIMS Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force-frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our ai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular and cellular cardiology
دوره 61 شماره
صفحات -
تاریخ انتشار 2013