Variational Mesh Adaptation: Isotropyand Equidistribution

نویسندگان

  • Weizhang Huang
  • WEIZHANG HUANG
چکیده

We present a new approach for developing more robust and error-oriented mesh adaptation methods. Specifically, assuming that a regular (in cell shape) and uniform (in cell size) computational mesh is used (as is commonly done in computation), we develop a criterion for mesh adaptation based on an error function whose definition is motivated by the analysis of function variation and local error behavior for linear interpolation. The criterion is then decomposed into two aspects, the isotropy (or conformity) and uniformity (or equidistribution) requirements, each of which can be easier to deal with. The functionals that satisfy these conditions approximately are constructed using discrete and continuous inequalities. A new functional is finally formulated by combining the functionals corresponding to the isotropy and uniformity requirements. The features of the functional are analyzed and demonstrated by numerical results. In particular, unlike the existing mesh adaptation functionals, the new functional has clear geometric meanings of minimization. A mesh that has the desired properties of isotropy and equidistribution can be obtained by properly choosing the values of two parameters. The analysis presented in this article also provides a better understanding of the increasingly popular method of harmonic mapping in two dimensions. c © 2001 Elsevier Science

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational mesh adaptation II: error estimates and monitor functions

The key to the success of a variational mesh adaptation method is to define a proper monitor function which controls mesh adaptation. In this paper we study the choice of the monitor function for the variational adaptive mesh method developed in the previous work [J. Comput. Phys. 174 (2001) 924]. Two types of monitor functions, scalar matrix and non-scalar matrix ones, are defined based on asy...

متن کامل

Variational Mesh Adaptation Methods for Axisymmetrical Problems

We study variational mesh adaptation for axially symmetric solutions to twodimensional problems. The study is focused on the relationship between the mesh density distribution and the monitor function and is carried out for a traditional functional that includes several widely used variational methods as special cases and a recently proposed functional that allows for a weighting between mesh i...

متن کامل

Measuring Mesh Qualities and Application to Variational Mesh Adaptation

The mesh assessment problem is investigated in this paper by taking into account the shape and size of elements and the solution behavior. Three elementwise mesh quality measures characterizing the shape, alignment, and adaptation features of elements are introduced according to the estimates of interpolation error developed on a general mesh. An adaptive mesh is assessed by an overall quality ...

متن کامل

Mathematical Principles of Anisotropic Mesh Adaptation

Mesh adaptation is studied from the mesh control point of view. Two principles, equidistribution and alignment, are obtained and found to be necessary and sufficient for a complete control of the size, shape, and orientation of mesh elements. A key component in these principles is the monitor function, a symmetric and positive definite matrix used for specifying the mesh information. A monitor ...

متن کامل

Grid Generation and Adaptation by Monge-Kantorovich Optimization in Two and Three Dimensions

The derivation of the Monge-Ampère (MA) equation, as it results from a variational principle involving grid displacement, is outlined in two dimensions (2D). This equation, a major element of Monge-Kantorovich (MK) optimization, is discussed both in the context of grid generation and grid adaptation. It is shown that grids which are generated by the MA equation also satisfy equations of an alte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001