System Identification of Nonlinear Autoregressive Models in Monitoring Dengue Infection
نویسندگان
چکیده
This paper proposes system identification on application of nonlinear AR (NAR) based on Artificial Neural Network (ANN) for monitor of dengue infections. In building the model, three selection criteria, i.e. the final prediction error (FPE), Akaike’s Information Criteria (AIC), and Lipschitz number were used. Each of the models is divided into two approaches, which are unregularized approach and regularized approach. The findings indicate that NARMAX model with regularized approach yields better accuracy by 80.60%. The best parameters’ settings for this thesis can be found using the Lipschitz number criterion for the model order selection with artificial neural network structure of 4 trained using the Levenberg Marquardt algorithm.
منابع مشابه
Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملSystem identification of a beam with frictional contact
The nonlinear system becomes an area with numerous investigations over the past decades. The conventional modal analysis could not be applied on nonlinear continuous system which makes it impossible to construct the reduced order models and obtain system response based on limited number of measurement points. Nonlinear normal modes provide a useful tool for extending modal analysis to nonlinea...
متن کاملNeural Network Nonlinear Modeling of a Common Rail Injection System for a CNG Engine
In this paper, nonlinear dynamical black-box models of a common rail injection system for a CNG engine are developed. In particular, the common rail pressure dynamics is modeled on the basis of three input signals, easily and cheaply measurable on board a vehicle. The nonlinear model is identified by means of Multi Layer Perceptron neural networks. Both non-autoregressive (NMAX) and autoregress...
متن کاملMIMO System Identification of Cement Mill Process Using NARX
This paper deals with the identification of MIMO cement mill process using Non-linear Autoregressive with Exogenous Inputs (NARX) models with wavelet network. NARX identification, based on a sequence of input/output samples, collected from a real cement mill process is used for black-box modeling of non-linear cement mill process. The NARX model is considered for two inputs and two outputs of s...
متن کامل