Modeling dynamic swarms
نویسندگان
چکیده
This paper proposes the problem of modeling video sequences of dynamic swarms (DS). We define DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data.
منابع مشابه
Control of agent swarms in random environments
The collective dynamic behavior of large groups of interacting autonomous agents (swarms) have inspired much research in both fundamental and engineering sciences. It is now widely acknowledged that the intrinsic nonlinearities due to mutual interactions can generate highly collective spatio-temporal patterns. Moreover, the resulting self-organized behavior cannot be simply guessed by solely in...
متن کاملSwarms in Dynamic Environments
Charged particle swarm optimization (CPSO) is well suited to the dynamic search problem since inter-particle repulsion maintains population diversity and good tracking can be achieved with a simple algorithm. This work extends the application of CPSO to the dynamic problem by considering a bi-modal parabolic environment of high spatial and temporal severity. Two types of charged swarms and an a...
متن کاملA multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing
Inspired by the phenomenon of symbiosis in natural ecosystems a multi-swarm cooperative particle swarm optimizer (MCPSO) is proposed as a new fuzzy modeling strategy for identification and control of non-linear dynamical systems. In MCPSO, the population consists of one master swarm and several slave swarms. The slave swarms execute particle swarm optimization (PSO) or its variants independentl...
متن کاملOn the modeling of crowd dynamics: Looking at the beautiful shapes of swarms
This paper presents a critical overview on the modeling of crowds and swarms and focuses on a modeling strategy based on the attempt to retain the complexity characteristics of systems under consideration viewed as an assembly of living entities characterized by the ability of expressing heterogeneously distributed strategies.
متن کاملApplying DDDAS Principles to Command, Control and Mission Planning for UAV Swarms
Government agencies predict ever-increasing inventories of Unmanned Aerial Vehicles (UAVs). Sizes will vary from current manned aircraft scales to miniature, micro, millimeter scales or smaller. Missions for UAVs will increase, especially for the 3-D missions: dull, dirty, and dangerous. As their numbers and missions increase, three important challenges will emerge for these large swarms of sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 117 شماره
صفحات -
تاریخ انتشار 2013