A fuzzy computational model of emotion for cloud based sentiment analysis
نویسندگان
چکیده
This paper presents a novel emotion modeling methodology for incorporating human emotion into intelligent computer systems. The proposed approach includes a method to elicit emotion information from users, a new representation of emotion (AV-AT model) that is modelled using a genetically optimized adaptive Fuzzy Logic technique, and a framework for predicting and tracking user’s affective trajectory over time. The fuzzy technique is evaluated in terms of its ability to model affective states in comparison to other existing machine learning approaches. The performance of the proposed affect modeling methodology is tested through the deployment of a personalised learning system, and series of offline and online experiments. A hybrid cloud intelligence infrastructure is used to conduct large-scale experiments to analyze user sentiments and associated emotions, using data from a million Facebook users. A performance analysis of the infrastructure on processing, analyzing, and data storage has been carried out, illustrating its viability for large-scale data processing tasks. A comparison of the proposed emotion categorizing approach with Facebook’s sentiment analysis API demonstrates that our approach can achieve comparable ∗Corresponding author Email addresses: [email protected] (Charalampos Karyotis), [email protected] (Faiyaz Doctor), [email protected] (Rahat Iqbal), [email protected] (Anne James), [email protected] (Victor Chang) Preprint submitted to Information Sciences February 9, 2017
منابع مشابه
Chinese Text Sentiment Analysis Utilizing Emotion Degree Lexicon and Fuzzy Semantic Model
Text on the web has become a valuable source for mining and analyzing user opinions on any topic. Non-native English speakers heavily support the growing use of Network media especially in Chinese. Many sentiment analysis studies have shown that a polarity lexicon can effectively improve the classification consequences. Social media, where users spontaneously generated content have become impor...
متن کاملA Fuzzy Behavioral Portfolio Model Based on Text Sentiment Analysis
A Fuzzy Behavioral Portfolio model (FBPM) is proposed for security investment with insufficient market information and uncertain emotion influence on investment return and risk. Based on the general behavioral portfolio theory, trapezoidal fuzzy number is employed to characterize investment return and risk. Text emotion analysis based on emotional lexicons is introduced to obtain the market inv...
متن کاملFuzzy Multi-Objective Scenario-based Stochastic Programming to Optimize Supply Chain
Nowadays, the capability of cloud management suppliers is one of the important advantages for suppliers that can improve the performance and flexibility and reduce costs in companies through easy access to resources. Also, the environmental impacts of suppliers are a significant issue in today’s industrialization and globalization world. This paper analyzes these subjects by fuzzy multi-objecti...
متن کاملCloud and IoT based Smart Car Parking System by using Mamdani Fuzzy Inference System (MFIS)
Internet of Things (IoT) and cloud computing technologies have connected the infrastructure of the city to make the context-aware and more intelligent city for utility its major resources. These technologies have much potential to solve thechallenges of urban areas around the globe to facilitate the citizens. A framework model that enables the integration of sensor’s data and analysis of ...
متن کاملText Sentiment Classification Based on Mixed Cloud Vector Model Clustering and Kernel Fisher Discriminant
In today’s world, the web has dramatically changed the way that people express their opinions. People use the internet to express their opinion, attitude, feeling and emotion about films, goods, news etc. It is challenging to automatically classify mass subjectivity comments into different sentiment orientation categories (e.g. positive/negative). Furthermore, the ambiguity and randomness, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 433-434 شماره
صفحات -
تاریخ انتشار 2018