Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens
نویسندگان
چکیده
Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.
منابع مشابه
Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression
BACKGROUND The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and...
متن کاملMicrobial hydroxylation of 16α, 17α-epoxyprogesterone by Penicillium decumbens
Microbial transformation has been successfully applied in the production of steroid intermediates with therapeutic use and commercial value in pharmaceutical industry due to its high regio- and stereo-selectivity. As such, it is still important to screen microbial strains with novel activity or more efficient abilities in the development of the commercial steroid industry. Biotransformation of ...
متن کاملCyclopenicillone, a unique cyclopentenone from the cultures of Penicillium decumbens.
Cyclopenicillone (1), possessing a unique 2,5-dimethylcyclopent-2-enone carbon skeleton, has been isolated from the cultures broth of the fungus Penicillium decumbens. The structure and absolute configuration of 1 were elucidated using a combination of NMR spectroscopy, CD data and computational approaches. Cyclopenicillone (1) demonstrated a dose-dependent (10-100 μM) inhibition against LPS-in...
متن کاملMicrobial hydroxylation of 16α, 17α-epoxyprogesterone by Penicillium decumbens
Microbial transformation has been successfully applied in the production of steroid intermediates with therapeutic use and commercial value in pharmaceutical industry due to its high regio- and stereo-selectivity. As such, it is still important to screen microbial strains with novel activity or more efficient abilities in the development of the commercial steroid industry. Biotransformation of ...
متن کاملInsights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate
BACKGROUND Agricultural residue is more efficient than purified cellulose at inducing lignocellulolytic enzyme production in Penicillium oxalicum GZ-2, but in Trichoderma reesei RUT-C30, cellulose induces a more efficient response. To understand the reasons, we designed an artificially simulated plant biomass (cellulose plus xylan) to study the roles and relationships of each component in the p...
متن کامل