Martingale Property and Pricing for Time-homogeneous Diffusion Models in Finance by

نویسنده

  • Zhenyu Cui
چکیده

The thesis studies the martingale properties, probabilistic methods and efficient unbiased Monte Carlo simulation methods for various time-homogeneous diffusion models commonly used in mathematical finance. Some of the popular stochastic volatility models such as the Heston model, the Hull-White model and the 3/2 model are special cases. The thesis consists of the following three parts: Part I of the thesis studies martingale properties of stock prices in stochastic volatility models driven by time-homogeneous diffusions. We find necessary and sufficient conditions for the martingale properties. The conditions are based on the local integrability of certain deterministic test functions. Part II of the thesis studies probabilistic methods for determining the Laplace transform of the first hitting time of an integral functional of a time-homogeneous diffusion, and pricing an arithmetic Asian option when the stock price is modeled by a time-homogeneous diffusion. We also consider the pricing of discrete variance swaps and discrete gamma swaps in stochastic volatility models based on time-homogeneous diffusions. Part III of the thesis studies the unbiased Monte Carlo simulation of option prices when the characteristic function of the stock price is known but its density function is unknown or complicated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications

We investigate the arbitrage-free property of stock price models where the local martingale component is based on an ergodic diffusion with a specified stationary distribution. These models are particularly useful for long horizon asset-liability management as they allow the modelling of long term stock returns with heavy tail ergodic diffusions, with tractable, time homogeneous dynamics, and w...

متن کامل

Comparison of Option Prices in Semimartingale Models

In this paper we generalize recent comparison results of El Karoui, Jeanblanc-Picqué, and Shreve (1998), Bellamy and Jeanblanc (2000) and Gushchin and Mordecki (2002) to d-dimensional exponential semimartingales S, S∗. Our main result gives sufficient conditions for the comparison of European options w.r.t. martingale pricing measures. The comparison is with respect to convex and also with resp...

متن کامل

Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process

Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...

متن کامل

Stochastic orders in dynamic reinsurance markets

We consider a dynamic reinsurance market, where the traded risk process is driven by a jump-diffusion and where claim amounts are unbounded. These markets are known to be incomplete, and there are typically infinitely many martingale measures. In this case, no-arbitrage pricing theory can typically only provide wide bounds on prices of reinsurance claims. Optimal martingale measures such as the...

متن کامل

A New Stock Model for Option Pricing in Uncertain Environment

The option-pricing problem is always an important part in modern finance. Assuming that the stock diffusion is a constant, some literature has introduced many stock models and given corresponding option pricing formulas within the framework of the uncertainty theory. In this paper, we propose a new stock model with uncertain stock diffusion for uncertain markets. Some option pricing formulas on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013