ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.
نویسندگان
چکیده
Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.
منابع مشابه
Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma
Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA). Materials and Methods: Male BALB/c mice were used in the present study. The mice we...
متن کاملOzone-induced airway hyperresponsiveness: roles of ROCK isoforms.
Acute ozone (O3) inhalation has been shown to cause airway and pulmonary epithelial injury with accompanying inflammation responses. Robust evidence exists that O3 induces airway hyperresponsiveness (AHR) in humans and in animal models. Several pathways exist that culminate in airway smooth muscle contraction, but the mechanism(s) by which O3 elicits AHR are unclear. Here, we review the recent ...
متن کاملIL-17A Modulates Oxidant Stress-Induced Airway Hyperresponsiveness but Not Emphysema
IL-17A induces the release of pro-inflammatory cytokines and of reactive oxygen species which could lead to neutrophilic inflammation. We determined the role of IL-17 receptor (IL-17R) signalling in oxidant-induced lung emphysema and airway hyperresponsiveness. IL-17R(-/-) and wild-type C57/BL6 mice were exposed to ozone (3 ppm; 3 hours) for 12 times over 6 weeks. Bronchial responsiveness to ac...
متن کاملMast cell activation is not required for induction of airway hyperresponsiveness by ozone in mice.
Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3 in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1-kitW/kitW-v (kitW/kitW-v) mice and the co...
متن کاملModulation of ozone-induced airway hyperresponsiveness and inflammation by interleukin-13.
The present study aimed to determine whether the T-helper cell type 2-derived cytokines, interleukin (IL)-4 and -13, can modulate the lung response to ozone exposure. IL-13(-/-), IL-4/13(-/-) and IL-13-overexpressing transgenic (Tg) mice were exposed to ozone (3 ppm; 3 h) or air. Wild-type (Wt) Balb/c mice and transgenic-negative littermates (IL-13Wt) were used as controls for gene-deficient an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 309 7 شماره
صفحات -
تاریخ انتشار 2015