Highest-weight Theory: Verma Modules
ثبت نشده
چکیده
We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given highest-weight, then the finite-dimensional representation we want is found as a quotient of this. These universal representations are known as “Verma modules”. They are infinite dimensional, not completely reducible, non-unitary and not representations of the corresponding group, but have quotients that do have the properties we want.
منابع مشابه
Modules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$
Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a new triangular decomposition. Singular vectors of Verma modules are determined using a similar condition with horizontal affine Lie subalgebras, and highest weight modules are described under the condition $c_1>0$ and $c_2=0$.
متن کاملJu n 20 07 HIGHEST - WEIGHT THEORY FOR TRUNCATED CURRENT LIE ALGEBRAS
is called a truncated current Lie algebra, or sometimes a generalised Takiff algebra. We shall describe a highest-weight theory for ĝ, and the reducibility criterion for the universal objects of this theory, the Verma modules. The principal motivation, beside the aesthetic, is that certain representations of affine Lie algebras are essentially representations of a truncated current Lie algebra....
متن کاملOn bosonization of 2d conformal field theories
We show how bosonic (free field) representations for so-called degenerate conformal theories are built by singular vectors in Verma modules. Based on this construction, general expressions of conformal blocks are proposed. As an example we describe new modules for the SL(2) Wess-Zumino -Witten model. They are, in fact, the simplest non-trivial modules in a full set of bosonized highest weight r...
متن کاملImaginary Highest-weight Representation Theory and Symmetric Functions
Affine Lie algebras admit non-classical highest-weight theories through alternative partitions of the root system. Although significant inroads have been made, much of the classical machinery is inapplicable in this broader context, and some fundamental questions remain unanswered. In particular, the structure of the reducible objects in non-classical theories has not yet been fully understood....
متن کاملRepresentations of Truncated Current Lie Algebras
Let g denote a Lie algebra, and let ĝ denote the tensor product of g with a ring of truncated polynomials. The Lie algebra ĝ is called a truncated current Lie algebra. The highest-weight theory of ĝ is investigated, and a reducibility criterion for the Verma modules is described. Let g be a Lie algebra over a field k of characteristic zero, and fix a positive integer N . The Lie algebra (1) ĝ =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012