Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3

نویسندگان

  • Siyuan Zhu
  • Yukiaki Ishida
  • Kenta Kuroda
  • Kazuki Sumida
  • Mao Ye
  • Jiajia Wang
  • Hong Pan
  • Masaki Taniguchi
  • Shan Qiao
  • Shik Shin
  • Akio Kimura
چکیده

Topological insulators (TIs) are a new quantum state of matter. Their surfaces and interfaces act as a topological boundary to generate massless Dirac fermions with spin-helical textures. Investigation of fermion dynamics near the Dirac point (DP) is crucial for the future development of spintronic devices incorporating topological insulators. However, research so far has been unsatisfactory because of a substantial overlap with the bulk valence band and a lack of a completely unoccupied DP. Here, we explore the surface Dirac fermion dynamics in the TI Sb2Te3 by time- and angle-resolved photoemission spectroscopy (TrARPES). Sb2Te3 has an in-gap DP located completely above the Fermi energy (EF). The excited electrons in the upper Dirac cone stay longer than those below the DP to form an inverted population. This was attributed to a reduced density of states (DOS) near the DP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3.

We show that the strongly spin-orbit coupled materials Bi2Te3 and Sb2Te3 and their derivatives belong to the Z2 topological-insulator class. Using a combination of first-principles theoretical calculations and photoemission spectroscopy, we directly show that Bi2Te3 is a large spin-orbit-induced indirect bulk band gap (delta approximately 150 meV) semiconductor whose surface is characterized by...

متن کامل

Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry.

The advent of Dirac materials has made it possible to realize two-dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexc...

متن کامل

Topological states and phase transitions in Sb2Te3-GeTe multilayers

Topological insulators (TIs) are bulk insulators with exotic 'topologically protected' surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes intera...

متن کامل

Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure

Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological co...

متن کامل

Electrical Detection of the Helical Spin Texture in a p-type Topological Insulator Sb2Te3

The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015