Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding.

نویسندگان

  • E Bell
  • J E Mullet
چکیده

A cDNA corresponding to the gene AtLox2 was isolated from an Arabidopsis thaliana library using a lipoxygenase (LOX) probe from soybean. AtLox2 encodes a 102-kD protein, AtLOX2, which has 42 to 45% amino acid sequence identity with other plant LOX sequences. The AtLOX2 sequence is more than 30 amino acids longer at the amino terminus than other plant LOX sequences, and this extension has features reminiscent of chloroplast transit peptides, suggesting that AtLOX2 may be chloroplast localized. AtLox2 mRNA levels are high in leaves and inflorescences but very low in seeds, roots, and stems. AtLox2 mRNA accumulation is rapidly induced in leaves in response to methyl jasmonate. Leaves that have been wounded and adjacent leaves on the same plant also accumulate AtLox2 mRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wounding changes the spatial expression pattern of the arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways.

The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we...

متن کامل

A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate.

We investigated the relationship between the expression of lipoxygenase (LOX) genes and the systemin-dependent wound response in tomato (Lycopersicon esculentum) leaves. A polymerase chain reaction-based approach was used to isolate two tomato Lox cDNAs, called TomLoxC and TomLoxD. Both TomLOXC and TomLOXD amino acid sequences possess an N-terminal extension of about 60 residues that were shown...

متن کامل

Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings.

Exposure of soybean (Glycine max) seedlings to low levels of atmospheric methyl jasmonate induced the expression and accumulation of one or more lipoxygenase(s) in the primary leaves, hypocotyls, epicotyls, and cotyledons. In the primary leaf, the major site of lipoxygenase accumulation in response to methyl jasmonate was in the vacuoles of paraveinal mesophyll cells. In the other organs, howev...

متن کامل

Effect of volatile methyl jasmonate on the oxylipin pathway in tobacco, cucumber, and arabidopsis.

The effect of atmospheric methyl jasmonate on the oxylipin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylipin pathway. Arabidopsis was...

متن کامل

Expression Pattern of pmt, erf1 and jap1 Genes in Nicotiana benthamiana and Atropa belladonna Plants under UV Radiation, Wounding and Methyl Jasmonate Treatments

The Solanaceae plants produce a variety of interesting biologically active products including the steroid alkaloids solanidine, nicotine and tropane alkaloids. Putrescine N-methyltransferase (PMT) is an enzyme that catalyses s-adenosylmethionine-dependent methylation of putrescine in one of the primary steps of nicotine and tropane alkaloids biosynthesis pathway. Two tobacco members of the AP2/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 1993