Regulation of Superoxide Dismutase Synthesis in Escherichia coli: Glucose Effect
نویسنده
چکیده
Growth of Escherichia coli based upon the fermentation of glucose, is associated with a low intracellular level of superoxide dismutase. Exhaustion of glucose, or depression of the pH due to accumulation of organic acids, causes these organisms to then obtain energy from the oxidative degradation of other substances present in a rich medium. This shift in metabolism is associated with a marked increase in the rate of synthesis of superoxide dismutase. Depression of the synthesis of superoxide dismutase by glucose is not due to catabolite repression since it is not eliminated by cyclic adenosine 3',5'-monophosphate and since a-methyl glucoside does not mimic the effect of glucose. Moreover, glucose itself no longer depresses superoxide dismutase synthesis when the pH has fallen low enough to cause a shift to a non-fermentative metabolism. It appears likely that superoxide dismutase is controlled directly or indirectly by the intracellular level of O., and that glucose depressed the level of this enzyme because glucose metabolism is not associated with as rapid a production of 0., as is the metabolism of many other substances. In accord with this view is the observation that paraquat, which can increase the rate of production of O,by redox cycling, caused a rapid and marked increase in superoxide dismutase.
منابع مشابه
Regulation of superoxide dismutase synthesis in Escherichia coli: glucose effect.
Growth of Escherichia coli, based upon the fermentation of glucose, is associated with a low intracellular level of superoxide dismutase. Exhaustion of glucose, or depression of the pH due to accumulation of organic acids, causes these organisms to then obtain energy from the oxidative degradation of other substances present in a rich medium. This shift in metabolism is associated with a marked...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملControls on the biosynthesis of the manganese-containing superoxide dismutase of Escherichia coli. Effects of thiols.
In vitro synthesis of Escherichia coli manganese-containing superoxide dismutase, directed by the plasmid pDT1-5, has been achieved. The Mn superoxide dismutase polypeptide was identified by electrophoresis on polyacrylamide gels, immunoprecipitation, and the competitive immunoprecipitation effect of pure, active E. coli Mn superoxide dismutase. Dithiothreitol and glutathione, but not cysteine,...
متن کاملThe role of oxygen radicals in dye-mediated photodynamic effects in Escherichia coli B.
Photosensitive dyes representative of the thiazines, xanthenes, acridines, and phenazines mediated phototoxicity in Escherichia coli B. The observed phototoxicity was sensitizer-, light-, and oxygen-dependent and is therefore a photodynamic effect. Hydroxyl radical scavengers conferred protection against the photodynamic action of all of the representative dyes. The extent of protection was dep...
متن کاملCatalase and Superoxide Dismutase in Escherichia coli ROLES IN RESISTANCE TO KILLING BY NEUTROPHILS*
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 3...
متن کامل