Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces

نویسندگان

  • Jesús M. Carnicer
  • Michael S. Floater
  • Juan Manuel Peña
چکیده

The goal of this paper is to derive linear convexity conditions for Bernstein–Bézier surfaces defined on rectangles and triangles. Previously known linear conditions are improved on, in the sense that the new conditions are weaker. Geometric interpretations are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdivision Algorithms and Convexity Analysis for Rational Bézier Triangular Patches

Triangular surfaces are important because in areas where the geometry is not similar to rectangular domain, the rectangular surface patch will collapse into a triangular patch. In such a case, one boundary edge may collapse into a boundary vertex of the patch, giving rise to geometric dissimilarities (e.g. shape parameters, Gaussian curvature distribution, cross boundary continuities etc.) and ...

متن کامل

Subharmonicity and convexity properties of Bernstein polynomials and Bézier nets on triangles

This paper is devoted to the comparison of various shape properties of triangular Bézier surfaces and of their Bézier nets, such as polyhedral convexity, axial convexity and subharmonicity. In order to better compare these properties, the different notations used by different authors are unified. It also includes counterexamples for the results that are not true.  1999 Elsevier Science B.V. Al...

متن کامل

Tensor-product monotonicity preservation

The preservation of surface shape is important in geometric modelling and approximation theory. In geometric modelling one would like to manipulate the shape of the surface being modelled by the simpler task of manipulating the control points. In scattered data approximation one might wish to approximate bivariate data sampled from a function with a shape property by a spline function sharing t...

متن کامل

Progressive iterative approximation for triangular Bézier surfaces

Recently, for the sake of fitting scattered data points, an important method based on the PIA (progressive iterative approximation) property of the univariate NTP (normalized totally positive) bases has been effectively adopted. We extend this property to the bivariate Bernstein basis over a triangle domain for constructing triangular Bézier surfaces, and prove that this good property is satisf...

متن کامل

A de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers in CAGD

In this paper, a de Casteljau algorithm to compute (p, q)-Bernstein Bézier curves based on (p, q)integers is introduced. We study the nature of degree elevation and degree reduction for (p, q)-Bézier Bernstein functions. The new curves have some properties similar to q-Bézier curves. Moreover, we construct the corresponding tensor product surfaces over the rectangular domain (u, v) ∈ [0, 1]× [0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1997