Computing intersection numbers between abelian varieties associated to subspaces of modular forms
نویسندگان
چکیده
We state a result and describe an algorithm for computing the intersection number between abelian varieties associated to complementary subspaces of the space of cuspidal modular forms.
منابع مشابه
The Chowla–Selberg Formula and The Colmez Conjecture
In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.
متن کاملChowla-selberg Formula and Colmez’s Conjecture
In this paper, we reinterpret the Colmez conjecture on Faltings’ height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving Faltings’ height of a CM abelian surface and arithmetic intersection numbers, and prove that Colmez’s conjecture for CM abelian surfaces is equivalent to the cuspitality of this modular form.
متن کاملRigid local systems, Hilbert modular forms, and Fermat’s last theorem
1. Frey representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 1.2. Classification: The rigidity method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 1.3. Construction: Hyper...
متن کاملModular Abelian Varieties of Odd Modular Degrees
In this paper, we will study modular Abelian varieties with odd congruence numbers by examining the cuspidal subgroup of J0(N). We will show that the conductor of such Abelian varieties must be of a special type. For example, if N is the conductor of an absolutely simple modular Abelian variety with an odd congruence number, then N has at most two prime divisors, and if N is odd, then N = p or ...
متن کاملExamples of abelian surfaces with everywhere good reduction
We describe several explicit examples of simple abelian surfaces over real quadratic fields with real multiplication and everywhere good reduction. These examples provide evidence for the Eichler–Shimura conjecture for Hilbert modular forms over a real quadratic field. Several of the examples also support a conjecture of Brumer and Kramer on abelian varieties associated to Siegel modular forms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 57 شماره
صفحات -
تاریخ انتشار 2013