A Classification of Rapidly Growing Ramsey Functions

نویسندگان

  • ANDREAS WEIERMANN
  • Paris Harrington
چکیده

Let f be a number-theoretic function. A finite set X of natural numbers is called f -large if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding f -largeness condition. We classify those functions f for which the statement PHf is independent of first order (Peano) arithmetic PA. If f is a fixed iteration of the binary length function, then PHf is independent. On the other hand PHlog∗ is provable in PA. More precisely let fα(i) := |i|H−1 α (i) where | i |h denotes the h-times iterated binary length of i and H−1 α denotes the inverse function of the α-th member Hα of the Hardy hierarchy. Then PHfα is independent of PA (for α ≤ ε0) iff α = ε0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Phase Transition Thresholds for the Paris Harrington Ramsey Numbers for a Fixed Dimension

This article is concerned with investigations on a phase transition which is related to the (finite) Ramsey theorem and the Paris-Harrington theorem. For a given number-theoretic function g, let Rd c (g)(k) be the least natural number R such that for all colourings P of the d-element subsets of {0, . . . , R− 1} with at most c colours there exists a subset H of {0, . . . , R− 1} such that P has...

متن کامل

Sharp thresholds for hypergraph regressive Ramsey numbers

The f -regressive Ramsey number R f (d, n) is the minimum N such that every colouring of the d-tuples of an N -element set mapping each x1, . . . , xd to a colour ≤ f(x1) contains a min-homogeneous set of size n, where a set is called min-homogeneous if every two d-tuples from this set that have the same smallest element get the same colour. If f is the identity, then we are dealing with the st...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

The Paris-Harrington Theorem

In Ramsey theory, very large numbers and fast-growing functions are more of a rule than an exception. The classical Ramsey numbers R(n,m) are known to be of exponential size: the original proof directly gives the upper bound R(n,m) ≤ ( m+n−2 n−1 ) , and an exponential lower bound is also known. For the van der Waerden numbers, the original proof produced upper bounds that were not even primitiv...

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003