A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations

نویسندگان

  • Xuan Zhao
  • Yang Yang
  • Charles E. Seyler
چکیده

Article history: Received 26 February 2014 Received in revised form 20 August 2014 Accepted 26 August 2014 Available online 3 September 2014

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system

Semi-Lagrangian (SL) methods have been very popular in the Vlasov simulation community [28, 2, 3, 18, 31, 4, 23, 25]. In this paper, we propose a new Strang split SL discontinuous Galerkin (DG) method for solving the Vlasov equation. Specifically, we apply the Strang splitting for the Vlasov equation [5], as a way to decouple the nonlinear Vlasov system into a sequence of linear equations. To e...

متن کامل

Provably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics

The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...

متن کامل

Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations

We develop a high-order positivity-preserving discontinuous Galerkin (DG) scheme for linear Vlasov-Boltzmann transport equations (Vlasov-BTE) under the action of quadratically confined electrostatic potentials. The solutions of such BTEs are positive probability distribution functions and it is very challenging to have a mass-conservative, high-order accurate scheme that preserves positivity of...

متن کامل

A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere

The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of applications are known to enjoy many computational advantages. DG methods coupled with strong-stabilitypreserving explicitRunge–Kutta discontinuousGalerkin (RKDG) timediscretizations provide a robust numerical approach suitable for geoscience applications including atmosphericmodeling.However, ...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 278  شماره 

صفحات  -

تاریخ انتشار 2014