Triton: topside ionosphere and nitrogen escape.
نویسندگان
چکیده
The principal ion in the ionosphere of Triton is N+. Energetic electrons of magnetospheric origin are the primary source of ionization, with a smaller contribution due to photoionization. To explain the topside plasma scale height, we postulate that N+ ions escape from Triton. The loss rate is 3.4 x 10(7) cm-2 s-1 or 7.9 x 10(24) ions s-1. Dissociative recombination of N2+ produces neutral exothermic fragments that can escape from Triton. The rate is estimated to be 8.6 x 10(6) N cm-2 s-1 or 2.0 x 10(24) atoms s-1. Implications for the magnetosphere of Neptune and Triton's evolution are discussed.
منابع مشابه
PLASMA TRANSPORT IN THE TOPSIDE VENUS IONOSPHERE R.w.scHuNK
Abeiraet-We have studied the extent to which certain transport processes affect ion composition and heat flow in the daytime, topside Venus ionosphere. Particular attention is given to the conditions that prevailed during the Mariner 5 measurements, at which time the topside Venus ionosphere appeared to be in a state of diffusive equilibrium. We have found that the ion composition is sensitive ...
متن کاملMartian ionospheric responses to dynamic pressure enhancements in the solar wind
As a weakly magnetized planet, Mars ionosphere/atmosphere interacts directly with the shocked solar wind plasma flow. Even though many numerical studies have been successful in reproducing numerous features of the interaction process, these earlier studies focused mainly on interaction under steady solar wind conditions. Recent observations suggest that plasma escape fluxes are significantly en...
متن کاملObservations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long-duration positive storm effect
[1] The long-duration positive ionospheric storm effect that occurred on 15 December 2006 is investigated using a combination of ground-based Global Positioning System (GPS) total electron content (TEC), TOPEX and Jason-1 TEC, and topside ionosphere/ plasmasphere TEC, GPS radio occultation, and tiny ionospheric photometer (TIP) observations from the Constellation Observing System for Meteorolog...
متن کاملIon Transients in the Polar Wind
The time evolution of field-aligned current-generated transient features in the high-latitude ionosphere is investigated. Ionospheric return currents generate signdicant downward heavy ion flows in the topside ionosphere with peak values well exceeding 10 scm'2s 'i. When the return current ceases the polar ionosphere rapidly returns to its previous equilibrium state. During the recovery phase o...
متن کاملWN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data
Plasma probe data from DMSP-F13, DMSP-F15 and DEMETER satellites were used to examine longitudinal structures in the topside equatorial ionosphere during fall equinox conditions of 2004 year. Since the launch of DEMETER satellite on 29 June 2004, all these satellites operate close together in the topside ionosphere. Here, data taken from Special Sensor-Ion, Electron and Scintillations (SSIES) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geophysical research letters
دوره 17 10 شماره
صفحات -
تاریخ انتشار 1990