The Sparse Eigenvalue Problem
نویسندگان
چکیده
In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as special cases. Unlike the l1-norm approximation to the cardinality constraint, which previous methods have used in the context of sparse PCA, we propose a tighter approximation that is related to the negative log-likelihood of a Student’s t-distribution. The problem is then framed as a d.c. (difference of convex functions) program and is solved as a sequence of convex programs by invoking the majorization-minimization method. The resulting algorithm is proved to exhibit global convergence behavior. The performance of the algorithm is empirically demonstrated on both sparse PCA (finding few relevant genes that explain as much variance as possible in a high-dimensional gene dataset) and sparse CCA (cross-language document retrieval and vocabulary selection for music retrieval) applications.
منابع مشابه
A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem
In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as spec...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملSolving a Rational Eigenvalue Problem in Fluid-Structure Interaction
In this paper we consider a rational eigenvalue problem governing the vibrations of a tube bundle immersed in an inviscid compressible fluid. Taking advantage of eigensolutions of appropriate sparse linear eigenproblems the large nonlinear eigenvalue problem is projected to a much smaller one which is solved by inverse iteration.
متن کاملA Survey of the Quadratic Eigenvalue Problem
We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify the available choices of methods and catalogue a...
متن کاملA DC Programming Approach for Sparse Eigenvalue Problem
We investigate the sparse eigenvalue problem which arises in various fields such as machine learning and statistics. Unlike standard approaches relying on approximation of the l0norm, we work with an equivalent reformulation of the problem at hand as a DC program. Our starting point is the eigenvalue problem to which a constraint for sparsity requirement is added. The obtained problem is first ...
متن کامل