Fructan: more than a reserve carbohydrate?
نویسندگان
چکیده
Most plants store starch or Suc as reserve carbohydrates, but about 15% of all flowering plant species store fructans, which are linear and branched polymers of Fru. Among the plants that store fructans are many of significant economic importance, such as cereals (e.g. barley, wheat, and oat), vegetables (e.g. chicory, onion, and lettuce), ornamentals (e.g. dahlia and tulip), and forage grasses (e.g. Lolium and Festuca) (Hendry and Wallace, 1993). Fructans isolated from these plants have a variety of applications. Small fructans have a sweet taste, whereas longer fructan chains form emulsions with a fat-like texture and a neutral taste. The human digestive tract does not contain enzymes able to degrade fructans; therefore, there is strong interest from the food industry to use them as low-calorie food ingredients. In plants, fructans may have functions other than carbon storage; they have been implicated in protecting plants against water deficit caused by drought or low temperatures (Hendry and Wallace, 1993; Pilon-Smits et al., 1995). The substrate for fructan synthesis is Suc, and like Suc, fructans are stored in the vacuole. Although Suc is synthesized in the cytoplasm, fructans are produced in the vacuole by the action of specific enzymes (fructosyltransferases) that transfer Fru from Suc to the growing fructan chain. Fructan synthesis is modulated by light, which changes the availability of Suc in the cell (Fig. 1). The biosynthetic enzymes are evolutionarily related to invertases, enzymes that hydrolyze Suc. The biochemistry of fructan synthesis has been determined, and the first genes encoding these biosynthetic enzymes have recently been cloned, opening new biotechnological opportunities for the use of fructans. Until now the major obstacles have been the limited availability of long-chain fructans and the heterogeneity of harvested fructans. It will now be possible to genetically engineer plants to produce large quantities of fructans of defined structure and size. Furthermore, fructan accumulation in plants that normally do not produce them may contribute to protection from water stress in these plants. A number of research groups have studied fructan accumulation in plants in an attempt to understand fructan synthesis and the physiological role of fructan accumulation in plants and to improve the commercial availability of fructans. In this Update we give an overview of these attempts and discuss their impact on our insight into fructan production in plants. First, a few words on fructan synthesis in bacteria, which is simpler than plant fructan biosynthesis because only a single biosynthetic enzyme is involved.
منابع مشابه
Linking Expression of Fructan Active Enzymes, Cell Wall Invertases and Sucrose Transporters with Fructan Profiles in Growing Taproot of Chicory (Cichorium intybus): Impact of Hormonal and Environmental Cues
In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis), fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation), and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation). In developing taproot, fructan synthesis ...
متن کاملUpdate on Biochemistry Fructan: More Than a Reserve Carbohydrate?
Most plants store starch or Suc as reserve carbohydrates, but about 15% of all flowering plant species store fructans, which are linear and branched polymers of Fru. Among the plants that store fructans are many of significant economic importance, such as cereals (e.g. barley, wheat, and oat), vegetables (e.g. chicory, onion, and lettuce), ornamentals (e.g. dahlia and tulip), and forage grasses...
متن کاملResponse of Fructan to Water Deficit in Growing Leaves of Tall Fescue.
Changes in dry matter and water-soluble carbohydrate components, especially fructan, were examined in the basal 25 mm of expanding leaf blades of tall fescue (Festuca arundinacea Schreb.) to assess their roles in plant response to water deficit. Water was withheld from vegetative plants grown in soil in controlled-environment chambers. As stress progressed, leaf elongation rate decreased sooner...
متن کاملEndogenous hormone concentrations correlate with fructan metabolism throughout the phenological cycle in Chrysolaena obovata.
BACKGROUND AND AIMS Chrysolaena obovata, an Asteraceae of the Brazilian Cerrado, presents seasonal growth, marked by senescence of aerial organs in winter and subsequent regrowth at the end of this season. The underground reserve organs, the rhizophores, accumulate inulin-type fructans, which are known to confer tolerance to drought and low temperature. Fructans and fructan-metabolizing enzymes...
متن کاملFructan biosynthesis in transgenic plants.
Data from plants transformed to accumulate fructan are assessed in the context of natural concentrations of reserve carbohydrates and natural fluxes of carbon in primary metabolism: Transgenic fructan accumulation is universally reported as an instantaneous endpoint concentration. In exceptional cases, concentrations of 60-160 mg g(-1) fresh mass were reported and compare favourably with natura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 120 2 شماره
صفحات -
تاریخ انتشار 1999