Probing the Universe on Gigaparsec Scales with Remote Cosmic Microwave Background Quadrupole Measurements
نویسنده
چکیده
Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces a polarization signal proportional to the CMB quadrupole anisotropy at the cluster’s location and look-back time. A survey of such remote quadrupole measurements provides information about large-scale cosmological perturbations. This paper presents a formalism for calculating the correlation function of remote quadrupole measurements in spherical harmonic space. The number of independent modes probed by both single-redshift and volume-limited surveys is presented, along with the length scales probed by these modes. In a remote quadrupole survey sparsely covering a large area of sky, the largest-scale modes probe the same length scales as the quadrupole but with much narrower Fourier-space window functions. The largest-scale modes are significantly correlated with the local CMB, but even when this correlation is projected out the largest remaining modes probe gigaparsec scales (comparable to the CMB at l = 2-10) with narrow window functions. These modes may provide insight into the possible anomalies in the large-scale CMB anisotropy. At fixed redshift, the data from such a survey form an E-type spin-2 field on the sphere to a good approximation; the near-absence of B modes will provide a valuable check on systematic errors. A survey of only a few low-redshift clusters allows an independent reconstruction of the five coefficients of the local CMB quadrupole, providing a test for contamination in the WMAP quadrupole. The formalism presented here is also useful for analyzing smaller-scale surveys to probe the late integrated Sachs-Wolfe effect and hence the properties of dark energy.
منابع مشابه
Getting Around Cosmic Variance
Cosmic microwave background (CMB) anisotropies probe the primordial density field at the edge of the observable Universe. There is a limiting precision (“cosmic variance”) with which anisotropies can determine the amplitude of primordial mass fluctuations. This arises because the surface of last scatter (SLS) probes only a finite two-dimensional slice of the Universe. Probing other SLSs observe...
متن کاملCross-correlation studies with CMB polarization maps
The free-electron population during the reionized epoch rescatters the cosmic microwave background ~CMB! temperature quadrupole and generates a now well-known polarization signal at large angular scales. While this contribution has been detected in the temperature-polarization cross power spectrum measured with Wilkinson Microwave Anisotropy Probe data, due to the large cosmic variance associat...
متن کاملCosmic Microwave Background
We asses the contribution to the observed large scale anisotropy of the cosmic microwave background radiation, arising from both gravity waves as well as adiabatic density perturbations, generated by a common inflationary mechanism in the early Universe. We find that for inflationary models predicting power law primordial spectra |δk| ∝ k, the relative contribution to the quadrupole anisotropy ...
متن کاملDensity Perturbations , Gravity Waves and the Cosmic Microwave
We asses the contribution to the observed large scale anisotropy of the cosmic microwave background radiation, arising from both gravity waves as well as adiabatic density perturbations, generated by a common inflationary mechanism in the early Universe. We find that for inflationary models predicting power law primordial spectra |δk| ∝ k, the relative contribution to the quadrupole anisotropy ...
متن کاملAn alternative to the cosmological ‘ concordance model ’
Precision measurements of the cosmic microwave background by WMAP are believed to have established a flat Λ-dominated universe, seeded by nearly scale-invariant adiabatic primordial fluctuations. However by relaxing the hypothesis that the fluctuation spectrum can be described by a single power law, we demonstrate that an Einstein-de Sitter universe with zero cosmological constant can fit the d...
متن کامل