Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature

نویسندگان

  • Elzbieta Kolaczkowska
  • Craig N. Jenne
  • Bas G. J. Surewaard
  • Ajitha Thanabalasuriar
  • Woo-Yong Lee
  • Maria-Jesus Sanz
  • Kerri Mowen
  • Ghislain Opdenakker
  • Paul Kubes
چکیده

Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE(-/-) mice prevent collateral host tissue damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of FITC for detecting the binding of antiangiogenic peptide to HUVECs

Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...

متن کامل

Electrochemical and Tribological Behaviour of Oxide Dispersion Strengthened Duplex Stainless Steel in Mine Water Environment

Abstract This work investigated the electrochemical and aqueous tribological behavior of hot pressed 2205 duplex stainless steel (DSS). DSS sintered composites of different volume percent (% vol) of partially stabilized zirconia (PSZ) was developed using powder metallurgy (PM) technique. Electrochemical behaviour was studied at room temperature, using open circuit potential and potentiody...

متن کامل

Imaging Nanotherapeutics in Inflamed Vasculature by Intravital Microscopy

Intravital microscopy (IVM) is the application of light microscopy to real time study biology of live animal tissues in intact and physiological conditions with the high spatial and temporal resolution. Advances in imaging systems, genetic animal models and imaging probes, IVM has offered quantitative and dynamic insight into cell biology, immunology, neurobiology and cancer. In this review, we...

متن کامل

Hydroxyethyl starch 130/0.4 decreases inflammation, neutrophil recruitment, and neutrophil extracellular trap formation.

BACKGROUND During systemic inflammation, leucocytes are activated and extravasate into damaged tissue. Activation and recruitment are influenced by different mechanisms, including the interaction of leucocytes with platelets and neutrophil extracellular traps (NET) formation. Here, we investigated the molecular mechanism by which hydroxyethyl starch (HES 130/0.4) dampens systemic inflammation i...

متن کامل

Development of a Liver Phantom Based on Computed Tomography Images for Dosimetric Purpose

Introduction: The present study was conducted with the aim of designing a liver phantom for dosimetry. To benchmark the results obtained by the developed liver phantom, another method was applied for the dosimetry of a real liver tissue using imaging. Materials and Methods: For the purpose of the study, a real liver tissue was converted into a phantom based on thegram-molecular weight of the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015