Global Optimization in Generalized Geometric Programming
نویسنده
چکیده
A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints and the objective are decomposed into the diierence of two convex functions. A convex relaxation of problem (DC) is then obtained based on the linear lower bounding of the concave parts of the objective function and constraints inside some box region. The proposed branch and bound type algorithm attains nite {convergence to the global minimum through the successive reenement of a convex relaxation of the feasible region and/or of the objective function and the subsequent solution of a series of nonlinear convex optimization problems. The eeciency of the proposed approach is enhanced by eliminating variables through monotonicity analysis, by maintaining tightly bound variables through rescaling, by further improving the supplied variable bounds through convex minimization, and nally by transforming each inequality constraint so as the concave part lower bounding is as tight as possible. The proposed approach is illustrated with a large number of test examples and robust stability analysis problems.
منابع مشابه
Global optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملGeometric Programming with Stochastic Parameter
Geometric programming is efficient tool for solving a variety of nonlinear optimizationproblems. Geometric programming is generalized for solving engineering design. However,Now Geometric programming is powerful tool for optimization problems where decisionvariables have exponential form.The geometric programming method has been applied with known parameters. However,the observed values of the ...
متن کاملA New Global Optimization Algorithm for Solving Generalized Geometric Programming
A global optimization algorithm for solving generalized geometric programming GGP problem is developed based on a new linearization technique. Furthermore, in order to improve the convergence speed of this algorithm, a new pruning technique is proposed, which can be used to cut away a large part of the current investigated region in which the global optimal solution does not exist. Convergence ...
متن کاملMulti-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملUsing an Imperialistic Competitive Algorithm in Global Polynomials Optimization (Case Study: 2D Geometric Correction of IKONOS and SPOT Imagery)
The number of high resolution space imageries in photogrammetry and remote sensing society is growing fast. Although these images provide rich data, the lack of sensor calibration information and ephemeris data does not allow the users to apply precise physical models to establish the functional relationship between image space and object space. As an alternative solution, some generalized mode...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کامل