The Arabidopsis embryonic shoot fate map.
نویسندگان
چکیده
A fate map has been constructed for the shoot apical region of the embryo of the dicotyledonous plant Arabidopsis thaliana using spontaneously arising clonal albino sectors caused by the chloroplast mutator 1-2 mutation. Chimeric seedlings exhibiting albino sectors shared between the cotyledons and first true leaves revealed patterns of organ inclusion and exclusion. Frequencies of clone sharing were used to calculate developmental distances between organs based on the frequency of clonal sectors failing to extend between different organs. The resulting fate map shows asymmetry in the developmental distances between the cotyledons (embryonic leaves) which in turn predicts the location of the first post-germination leaf and the handedness of the spiral of leaf placement around the central stem axis in later development. The map suggests that embryonic leaf fate specification in the cotyledons may represent a developmental ground state necessary for the formation of the shoot apical meristem.
منابع مشابه
TOPLESS regulates apical embryonic fate in Arabidopsis.
The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFER...
متن کاملRole of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis.
Postembryonic development in higher plants is marked by repetitive organ formation via a self-perpetuating stem cell system, the shoot meristem. Organs are initiated at the shoot meristem periphery, while a central zone harbors the stem cells. Here we show by genetic and molecular analyses that the ZWILLE (ZLL) gene is specifically required to establish the central-peripheral organization of th...
متن کاملAuxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis
Somatic embryogenesis requires auxin and establishment of the shoot apical meristem (SAM). WUSCHEL (WUS) is critical for stem cell fate determination in the SAM of higher plants. However, regulation of WUS expression by auxin during somatic embryogenesis is poorly understood. Here, we show that expression of several regulatory genes important in zygotic embryogenesis were up-regulated during so...
متن کاملLeaf polarity and meristem formation in Arabidopsis.
Shoot apical meristems (SAMs) of seed plants are small groups of pluripotent cells responsible for making leaves, stems and flowers. While the primary SAM forms during embryogenesis, new SAMs, called axillary SAMs, develop later on the body of the plant and give rise to branches. In Arabidopsis plants, axillary SAMs develop in close association with the adaxial leaf base at the junction of the ...
متن کاملStable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU.
In seed plants, the shoot apical and root apical meristems form at the apical and basal poles of the embryonic axis, and leaves form at the flanks of the shoot apical meristem. ANGUSTIFOLIA3/GRF INTERACTING FACTOR1 (AN3/GIF1) encodes a putative transcriptional co-activator involved in various aspects of shoot development, including the maintenance of shoot apical meristems, cell proliferation a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 4 شماره
صفحات -
تاریخ انتشار 2000