Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity
نویسندگان
چکیده
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.
منابع مشابه
Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning
Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation (DCS-LTP), which is polarity specific, NMDA...
متن کاملTask-Specific Effect of Transcranial Direct Current Stimulation on Motor Learning
Transcranial direct current stimulation (tDCS) is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1), tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether ...
متن کاملEnhancement of non-dominant hand motor function by anodal transcranial direct current stimulation.
Transcranial direct current stimulation (tDCS) is a non-invasive powerful method to modulate brain activity. It can enhance motor learning and working memory in healthy subjects. To investigate the effects of anodal tDCS (1 mA, 20 min) of the dominant and non-dominant primary motor cortex (M1) on hand motor performance in healthy right-handed volunteers, healthy subjects underwent one session o...
متن کاملEnhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation
Memory is the capacity to store, maintain, and retrieve events or information from the mind. Difficulties in verbal episodic memory commonly occur in healthy aging. In this paper, we assess the hypothesis that anodal transcranial direct current stimulation (tDCS) applied over the dorsolateral prefrontal cortex (DLPFC) or over the parietal cortex (PARC) could facilitate verbal episodic memory in...
متن کاملLong-Term Effects of Serial Anodal tDCS on Motion Perception in Subjects with Occipital Stroke Measured in the Unaffected Visual Hemifield
Transcranial direct current stimulation (tDCS) is a novel neuromodulatory tool that has seen early transition to clinical trials, although the high variability of these findings necessitates further studies in clinically relevant populations. The majority of evidence into effects of repeated tDCS is based on research in the human motor system, but it is unclear whether the long-term effects of ...
متن کامل