ERCC1-XPF endonuclease facilitates DNA double-strand break repair.

نویسندگان

  • Anwaar Ahmad
  • Andria Rasile Robinson
  • Anette Duensing
  • Ellen van Drunen
  • H Berna Beverloo
  • David B Weisberg
  • Paul Hasty
  • Jan H J Hoeijmakers
  • Laura J Niedernhofer
چکیده

ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA repair endonuclease ERCC1–XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy

The ERCC1-XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In...

متن کامل

Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs.

In this review, we focus on the discrepant roles of the DNA repair complex ERCC1/XPF in the prevention of cancer and in the resistance of cancer to chemotherapy. ERCC1/XPF is essential for nucleotide excision repair (NER) incising DNA 5' to the lesion. NER deficiency results in the skin cancer-prone inherited disease xeroderma pigmentosum (XP). The ERCC1/XPF complex is also involved in recombin...

متن کامل

Recruitment and positioning determine the specific role of the XPF‐ERCC1 endonuclease in interstrand crosslink repair

XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure bot...

متن کامل

ERCC 4 ( xeroderma pigmentosum , complementation group F )

Xeroderma pigmentosum group F complementing factor; DNA-repair protein complementing XPF cells 905 amino acids; form a stable complex with the ERCC1 protein; The XPF protein and the ERCC1 protein form a complex that exhibits structure specific endonuclease activity that is responsible for the 5' incision during the NER reaction. XPF-ERCC1 also binds to XPA (through ERCC1) and to RPA (through XP...

متن کامل

The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks.

Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2008