Phosphatidylinositol 3-Kinase Promotes V-ATPase Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence1
نویسندگان
چکیده
PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.
منابع مشابه
Glucose activates H(+)-ATPase in kidney epithelial cells.
The vacuolar H(+)-ATPase (V-ATPase) acidifies compartments of the vacuolar system of eukaryotic cells. In renal epithelial cells, it resides on the plasma membrane and is essential for bicarbonate transport and acid-base homeostasis. The factors that regulate the H(+)-ATPase remain largely unknown. The present study examines the effect of glucose on H(+)-ATPase activity in the pig kidney epithe...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملRapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate.
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate th...
متن کاملVacuolar-type H+-ATPase-mediated acidosis promotes in vitro osteoclastogenesis via modulation of cell migration.
Localized acidification of the osteoclast-bone interface is driven by a vacuolar-type H+-ATPase (V-ATPase) in the plasma membrane in a process thought to be associated with bone resorption. The present study investigated the mechanism underlying the roles of V-ATPase-induced acidosis in osteoclastogenesis. Active proton pumping due to increased V-ATPase activity during RANKL-induced osteoclasto...
متن کاملThe vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor.
Evidence indicates that endosomal entry promotes signaling by the Notch receptor, but the mechanisms involved are not clear. In a search for factors that regulate Notch activation in endosomes, we isolated mutants in Drosophila genes that encode subunits of the vacuolar ATPase (V-ATPase) proton pump. Cells lacking V-ATPase function display impaired acidification of the endosomal compartment and...
متن کامل