Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia–Derived Progenitors During Zebrafish Retinal Regeneration
نویسندگان
چکیده
PURPOSE The purpose of this study was to investigate the effect of the antiviral drug ganciclovir (GCV) on Müller glia dedifferentiation and proliferation and the underlying cellular and molecular mechanisms in adult zebrafish. METHODS A Tg(1016tuba1a:GFP) transgenic line was generated to identify injury-induced dedifferentiation of Müller glia. Mechanical retinal damage was induced by a needle-poke injury on the back of the eyes in adult zebrafish. Phosphate-buffered saline or GCV was injected into the vitreous of the eye at the time of injury or through the cornea. The GCV clearance rate from the eye was determined by a reversed-phase HPLC method. Green fluorescent protein (GFP) and bromodeoxyuridine (BrdU) immunofluorescence were used to determine the effect of GCV on retinal regeneration. Cell apoptosis was evaluated by TUNEL staining. Microglia were labeled by vitreous injection of isolectin IB4 conjugates. Quantitative (q)PCR and Western blot analysis were used to determine gene expression in the retina. RESULTS Ganciclovir treatment significantly reduced the number of BrdU+ Müller glia-derived progenitor cells (MGPCs) at 4 days post injury. Further analysis showed that GCV had no impact on Müller glia dedifferentiation and the initial formation of MGPCs. Our data indicate that GCV irreversibly inhibited MGPC proliferation likely through a p53-p21(cip1)-dependent pathway. Interestingly, unlike control cells, GCV-treated Müller glia cells were "locked" in a prolonged dedifferentiated state. CONCLUSIONS Our study uncovered a novel inhibitory effect of GCV on MGPC proliferation and suggests its potential use as a tool to uncover molecular mechanisms underlying retinal regeneration in zebrafish.
منابع مشابه
The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration.
Unlike mammals, teleost fish can regenerate an injured retina, restoring lost visual function. Little is known of the molecular events that underlie retina regeneration. We previously found that in zebrafish, retinal injury stimulates Müller glia to generate multipotent alpha1-tubulin (alpha1T) and pax6-expressing progenitors for retinal repair. Here, we report the identification of a critical ...
متن کاملTumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration.
Intense light exposure causes photoreceptor apoptosis in dark-adapted adult albino zebrafish (Danio rerio). Subsequently, Müller glia increase expression of the Achaete-scute complex-like 1a (Ascl1a) and Signal transducer and activator of transcription 3 (Stat3) transcription factors and re-enter the cell cycle to yield undifferentiated neuronal progenitors that continue to proliferate, migrate...
متن کاملMidkine-a Protein Localization in the Developing and Adult Retina of the Zebrafish and Its Function During Photoreceptor Regeneration
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury...
متن کاملGenetic evidence for shared mechanisms of epimorphic regeneration in zebrafish.
In a microarray-based gene profiling analysis of Müller glia-derived retinal stem cells in light-damaged retinas from adult zebrafish, we found that 2 genes required for regeneration of fin and heart tissues in zebrafish, hspd1 (heat shock 60-kDa protein 1) and mps1 (monopolar spindle 1), were up-regulated. Expression of both genes in the neurogenic Müller glia and progenitors was independently...
متن کاملConditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration.
The tuba1a gene encodes a neural-specific α-tubulin isoform whose expression is restricted to the developing and regenerating nervous system. By using zebrafish as a model system for studying CNS regeneration, we recently showed that retinal injury induces tuba1a gene expression in Müller glia that reentered the cell cycle. However, because of the transient nature of tuba1a gene expression duri...
متن کامل