Unsupervised Estimation of Writing Style Models for Improved Unconstrained Off-line Handwriting Recognition
نویسندگان
چکیده
The performance of writer-independent unconstrained handwriting recognition is severely affected by variations in writing style. In a segmentation-free approach based on Hidden-Markov models we, therefore, use multiple recognition models specialized to specific writing styles in order to improve recognition performance. As the explicit definition of writing styles is not obvious we propose an unsupervised clustering procedure that estimates Gaussian mixture models for writing styles in a completely datadriven manner and thus implicitly establishes classes of writing styles. On a challenging writer-independent unconstrained handwriting recognition task our two stage recognition approach – first performing a writing style classification and then using a style-specific writing model for decoding – achieves superior performance compared to a single style-independent baseline system.
منابع مشابه
From Off-line to On-line Handwriting Recognition
On-line handwriting includes more information on the time order of the writing signal and on the dynamics of the writing process than off-line handwriting. Therefore, on-line recognition systems achieve higher recognition rates. This can be concluded from results reported in the literature, and has been demonstrated empirically as part of this work. We propose a new approach for recovering the ...
متن کاملComparing Normalization and Adaptation Techniques for On-Line Handwriting Recognition
In this paper a writer-independent on-line handwriting recognition system is described comparing the influence of handwriting normalization and adaptation techniques on the recognition pe@ormance. Our Hidden Markov Model (HMM) -based recognition system for unconstrained German script can be adapted to the writing style of a new writer using d#erent adaptation techniques whereas the impact of pr...
متن کاملOnline Recognition of Handwritten Korean and English Characters
In this study, an improved HMM based recognition model is proposed for online English and Korean handwritten characters. The pattern elements of the handwriting model are sub character strokes and ligatures. To deal with the problem of handwriting style variations, a modified Hierarchical Clustering approach is introduced to partition different writing styles into several classes. For each of t...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملWord segmentation of off-line handwritten documents
Word segmentation is the most critical pre-processing step for any handwritten document recognition/retrieval system. This paper describes an approach to separate a line of unconstrained (written in a natural manner) handwritten text into words. When the writing style is unconstrained, recognition of individual components may be unreliable so they must be grouped together into word hypotheses, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006