Distributionally robust simple integer recourse
نویسندگان
چکیده
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer roundup of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DRSIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed integer second-order conic program.
منابع مشابه
Tractable Distributionally Robust Optimization with Data
We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...
متن کاملConic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...
متن کاملK-adaptability in two-stage distributionally robust binary programming
We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate secondstage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability proble...
متن کاملDecomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs
In this paper, we introduce and study a two-stage distributionally robust mixed binary problem (TSDR-MBP) where the random parameters follow the worst-case distribution belonging to an uncertainty set of probability distributions. We present a decomposition algorithm, which utilizes distribution separation procedure and parametric cuts within Benders’ algorithm or Lshaped method, to solve TSDR-...
متن کاملStochastic Programming with Simple Integer Recourse
Stochastic integer programs are notoriously difficult. Very few properties are known and solution algorithms are very scarce. In this paper, we introduce the class of stochastic programs with simple integer recourse, a natural extension of the simple recourse case extensively studied in stochastic continuous programs. Analytical as well as computational properties of the expected recourse funct...
متن کامل