Distributionally robust simple integer recourse

نویسندگان

  • Weijun Xie
  • Shabbir Ahmed
  • Maarten van der Vlerk
چکیده

The simple integer recourse (SIR) function of a decision variable is the expectation of the integer roundup of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DRSIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed integer second-order conic program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Distributionally Robust Optimization with Data

We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...

متن کامل

Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls

Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...

متن کامل

K-adaptability in two-stage distributionally robust binary programming

We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate secondstage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability proble...

متن کامل

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs

In this paper, we introduce and study a two-stage distributionally robust mixed binary problem (TSDR-MBP) where the random parameters follow the worst-case distribution belonging to an uncertainty set of probability distributions. We present a decomposition algorithm, which utilizes distribution separation procedure and parametric cuts within Benders’ algorithm or Lshaped method, to solve TSDR-...

متن کامل

Stochastic Programming with Simple Integer Recourse

Stochastic integer programs are notoriously difficult. Very few properties are known and solution algorithms are very scarce. In this paper, we introduce the class of stochastic programs with simple integer recourse, a natural extension of the simple recourse case extensively studied in stochastic continuous programs. Analytical as well as computational properties of the expected recourse funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017