Protein Complexes Prediction Method Based on Core—Attachment Structure and Functional Annotations

نویسندگان

  • Bo Li
  • Bo Liao
چکیده

Recent advances in high-throughput laboratory techniques captured large-scale protein-protein interaction (PPI) data, making it possible to create a detailed map of protein interaction networks, and thus enable us to detect protein complexes from these PPI networks. However, most of the current state-of-the-art studies still have some problems, for instance, incapability of identifying overlapping clusters, without considering the inherent organization within protein complexes, and overlooking the biological meaning of complexes. Therefore, we present a novel overlapping protein complexes prediction method based on core-attachment structure and function annotations (CFOCM), which performs in two stages: first, it detects protein complex cores with the maximum value of our defined cluster closeness function, in which the proteins are also closely related to at least one common function. Then it appends attach proteins into these detected cores to form the returned complexes. For performance evaluation, CFOCM and six classical methods have been used to identify protein complexes on three different yeast PPI networks, and three sets of real complexes including the Munich Information Center for Protein Sequences (MIPS), the Saccharomyces Genome Database (SGD) and the Catalogues of Yeast protein Complexes (CYC2008) are selected as benchmark sets, and the results show that CFOCM is indeed effective and robust for achieving the highest F-measure values in all tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

Investigating the functional effectiveness of residential complexes open space on residents' attachment (Case study: Municipal District No.6, Shiraz City)

Introduction: Place attachment is the intersection of physical elements, activities, and mental concepts concerning place, formed from the environmental characteristics and individuals' mental patterns and evaluation. Based on the available resources, it seems that improving the functional efficiency of residential open spaces can help to improve the level of people's attachment. Methodology: T...

متن کامل

Refining Markov Clustering for protein complex prediction by incorporating core-attachment structure.

Protein complexes are responsible for most of vital biological processes within the cell. Understanding the machinery behind these biological processes requires detection and analysis of complexes and their constituent proteins. A wealth of computational approaches towards detection of complexes deal with clustering of protein-protein interaction (PPI) networks. Among these clustering approache...

متن کامل

Struct2Net: Integrating Structure into Protein-Protein Interaction Prediction

UNLABELLED This paper presents a framework for predicting protein-protein interactions (PPI) that integrates structure-based information with other functional annotations, e.g. GO, co-expression and co-localization, etc., Given two protein sequences, the structure-based interaction prediction technique threads these two sequences to all the protein complexes in the PDB and then chooses the best...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017