Bloch-Floquet waves in optical ring resonators

نویسندگان

  • Kathleen McGarvey-Lechable
  • Pablo Bianucci
چکیده

Modal coupling between frequency-degenerate resonances of an optical ring resonator is a commonly observed phenomenon that results in adverse mode splitting. Traditionally, this coupling is attributed to Rayleigh scattering of a propagating electromagnetic wave into its associated degenerate counter-propagating mode from small perturbations to the dielectric material of the resonator. We have chosen to reframe the problem of intracavity Rayleigh scattering by considering the optical ring resonator as an infinitely-long, one-dimensional photonic crystal (PhC) that possesses a lattice constant equal to the perimeter of the ring. Through application of Bloch-Floquet theory, we show that modal coupling between degenerate resonances of a ring can effectively be described as the formation of photonic frequency bands in the dispersion relation of the resonator. We additionally demonstrate that the Bragg planes of the PhC lattice coincide with the phase matching conditions for constructive interference in the ring. Finally, we show that the magnitude of frequency splitting of a particular resonance is proportional to its associated coefficient in the Fourier expansion of the ring’s periodic dielectric function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge Waves and Localization in Lattices Containing Tilted Resonators

The paper presents the study of waves in a structured geometrically chiral solid. A special attention is given to the analysis of the Bloch-Floquet waves in a doubly periodic highcontrast lattice containing tilted resonators. Dirac-like dispersion of Bloch waves in the structure is identified, studied, and applied to wave-guiding and wave-defect interaction problems. The work is extended to the...

متن کامل

Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators

In this paper, a photonic crystal structure for comparing two bits has beenproposed. This structure includes four resonant rings and some nonlinear rods. Thenonlinear rods used inside the resonant rings were made of a doped glass whose linearand nonlinear refractive indices are 1.4 and 10-14 m2/W, respectively. Using Kerr effect,optical waves are guided toward the correc...

متن کامل

Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter

Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...

متن کامل

Quality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators

In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...

متن کامل

Add-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators

Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018