Bayesian Nonparametric Models on Decomposable Graphs
نویسندگان
چکیده
Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques.
منابع مشابه
Bayesian inference for Gaussian graphical models beyond decomposable graphs
Bayesian inference for graphical models has received much attention in the literature in recent years. It is well known that when the graph G is decomposable, Bayesian inference is significantly more tractable than in the general non-decomposable setting. Penalized likelihood inference on the other hand has made tremendous gains in the past few years in terms of scalability and tractability. Ba...
متن کاملBayesian inference in probabilistic graphical models
This thesis consists of four papers studying structure learning and Bayesian inference in probabilistic graphical models for both undirected and directed acyclic graphs (DAGs). Paper A presents a novel algorithm, called the Christmas tree algorithm (CTA), that incrementally construct junction trees for decomposable graphs by adding one node at a time to the underlying graph. We prove that CTA w...
متن کاملConstructing vertex decomposable graphs
Recently, some techniques such as adding whiskers and attaching graphs to vertices of a given graph, have been proposed for constructing a new vertex decomposable graph. In this paper, we present a new method for constructing vertex decomposable graphs. Then we use this construction to generalize the result due to Cook and Nagel.
متن کاملBayesian clustering in decomposable graphs
Abstract. In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph. Emphasis is placed on a particular prior distribution which derives its motivation fr...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کامل