An informative Bayesian structural equation model to assess source-specific health effects of air pollution.
نویسندگان
چکیده
A primary objective of current air pollution research is the assessment of health effects related to specific sources of air particles or particulate matter (PM). Quantifying source-specific risk is a challenge because most PM health studies do not directly observe the contributions of the pollution sources themselves. Instead, given knowledge of the chemical characteristics of known sources, investigators infer pollution source contributions via a source apportionment or multivariate receptor analysis applied to a large number of observed elemental concentrations. Although source apportionment methods are well established for exposure assessment, little work has been done to evaluate the appropriateness of characterizing unobservable sources thus in health effects analyses. In this article, we propose a structural equation framework to assess source-specific health effects using speciated elemental data. This approach corresponds to fitting a receptor model and the health outcome model jointly, such that inferences on the health effects account for the fact that uncertainty is associated with the source contributions. Since the structural equation model (SEM) typically involves a large number of parameters, for small-sample settings, we propose a fully Bayesian estimation approach that leverages historical exposure data from previous related exposure studies. We compare via simulation the performance of our approach in estimating source-specific health effects to that of 2 existing approaches, a tracer approach and a 2-stage approach. Simulation results suggest that the proposed informative Bayesian SEM is effective in eliminating the bias incurred by the 2 existing approaches, even when the number of exposures is limited. We employ the proposed methods in the analysis of a concentrator study investigating the association between ST-segment, a cardiovascular outcome, and major sources of Boston PM and discuss the implications of our findings with respect to the design of future PM concentrator studies.
منابع مشابه
A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases.
Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulat...
متن کاملLetter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants
Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3). Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6). Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria pollutants (particula...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملHealth effects of air pollution in worldwide countries: an ecological study
Background and aims: Air pollution is one of the health problems worldwide. Previous epidemiological studies have investigated the impacts of air pollution on respiratory and cardiovascular diseases. The aim of this study was to determine the associations between air pollution levels and different health indicators among world countries. Methods: This eco...
متن کاملStructural Equation Modeling (SEM) in Health Sciences Education Researches: An Overview of the Method and Its Application
Introduction: There are many situations through which researchers of human sciences particularly in health sciences education attempt to assess relationships of variables. Moreover researchers may be willing to assess overall fit of theoretical models with the data emerged from the study population. This review introduces the structural equation models method and its application in health scien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2007