Numerical Issues in the Implementation of High Order Polynomial Multi-Domain Penalty Spectral GalerkinMethods for Hyperbolic Conservation Laws
نویسندگان
چکیده
In this paper, we consider high ordermulti-domain penalty spectral Galerkin methods for the approximation of hyperbolic conservation laws. This formulation has a penalty parameter which can vary in space and time, allowing for flexibility in the penalty formulation. This flexibility is particularly advantageous for problems with an inhomogeneous mesh. We show that the discontinuous Galerkin method is equivalent to the multi-domain spectral penalty Galerkin method with a particular value of the penalty parameter. The penalty parameter has an effect on both the accuracy and stability of the method. We examine the numerical issues which arise in the implementation of high order multi-domain penalty spectral Galerkin methods. The coefficient truncation method is proposed to prevent the rapid error growth due to round-off errors when high order polynomials are used. Finally, we show that an inconsistent evaluation of the integrals in the penalty method may lead to growth of errors. Numerical examples for linear and nonlinear problems are presented. AMS subject classifications: 65M70, 65M12, 65M60, 65L07
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملThe efficient implementation of a finite element, multi-resolution viscosity method for hyperbolic conservation laws
It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flows. Adding a diffusion term to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant solution developed in the context of spectral methods by Eitan Tadmor and coworkers is t...
متن کاملMulti-domain hybrid spectral-WENO methods for hyperbolic conservation laws
In this article we introduce the multi-domain hybrid Spectral-WENO method aimed at the discontinuous solutions of hyperbolic conservation laws. The main idea is to conjugate the non-oscillatory properties of the high order weighted essentially non-oscillatory (WENO) finite difference schemes with the high computational efficiency and accuracy of spectral methods. Built in a multi-domain framewo...
متن کاملSpectral/hp Element Method with Hierarchical Reconstruction for Solving Nonlinear Hyperbolic Conservation Laws
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM ’07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservati...
متن کامل