Computation of axonal elongation in head trauma finite element simulation.
نویسندگان
چکیده
In the case of head trauma, elongation of axons is thought to result in brain damage and to lead to Diffuse Axonal Injuries (DAI). Mechanical parameters have been previously proposed as DAI metric. Typically, brain injury parameters are expressed in terms of pressure, shearing stresses or invariants of the strain tensor. Addressing axonal deformation within the brain during head impact can improve our understanding of DAI mechanisms. A new technique based on directional measurements of water diffusion in soft tissue using Magnetic Resonance Imaging (MRI), called Diffusion Tensor Imaging (DTI), provides information on axonal orientation within the brain. The present study aims at coupling axonal orientation from a 12-patient-based DTI 3D picture, called "DTI atlas", with the Strasbourg University Finite Element Head Model (SUFEHM). This information is then integrated in head trauma simulation by computing axonal elongation for each finite element of the brain model in a post-processing of classical simulation results. Axonal elongation was selected as computation endpoint for its strong potential as a parameter for DAI prediction and location. After detailing the coupling technique between DTI atlas and the head FE model, two head trauma cases presenting different DAI injury levels are reconstructed and analyzed with the developed methodology as an illustration of axonal elongation computation. Results show that anisotropic brain structures can be realistically implemented into an existing finite element model of the brain. The feasibility of integrating axon fiber direction information within a dedicated post-processor is also established in the context of the computation of axonal elongation. The accuracy obtained when estimating level and location of the computed axonal elongation indicates that coupling classical isotropic finite element simulation with axonal structural anisotropy is an efficient strategy. Using this method, tensile elongation of the axons can be directly invoked as a mechanism for Diffuse Axonal Injury.
منابع مشابه
Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملCombining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structu...
متن کاملFinite Element Modelling of Impact-induced Axonal Injury in Sheep
This paper describes a numerical study of axonal injury caused by an impact to the head of the anaesthetised sheep. In the model, described in Anderson et al. (2003), injury is closely related to the peak impact force and to kinematic measurements, particularly the peak change in linear and angular velocity. A three-dimensional finite element model of the sheep skull and brain was constructed t...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملکمانش پوستههای استوانهای با گشودگی شبه بیضوی تحت فشار محوری
Understanding how a cutout influences the load bearing capacity and buckling behavior of cylindrical shells is fundamental in the design of structural components used in automobiles, aircrafts, and marine structures. In this article, simulation and analysis of steel cylindrical shells with various lengths, include quasi elliptical cutout, subjected to axial compression were systematically carri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2011