Scale-based clustering using the radial basis function network
نویسندگان
چکیده
This paper shows how scale-based clustering can be done using the radial basis function network (RBFN), with the RBF width as the scale parameter and a dummy target as the desired output. The technique suggests the "right" scale at which the given data set should be clustered, thereby providing a solution to the problem of determining the number of RBF units and the widths required to get a good network solution. The network compares favorably with other standard techniques on benchmark clustering examples. Properties that are required of non-Gaussian basis functions, if they are to serve in alternative clustering networks, are identified. This work, on the whole, points out an important role played by the width parameter in RBFN, when observed over several scales, and provides a fundamental link to the scale space theory developed in computational vision.
منابع مشابه
Impact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...
متن کاملScale - based Clustering using the RadialBasis Function
| Adaptive learning dynamics of the Radial Basis Function Network (RBFN) are compared with a scale-based clustering technique Won93] and a relationship between the two is pointed out. Using this link, it is shown how scale-based clustering can be done using the RBFN, with the Radial Basis Function (RBF) width as the scale parameter. The technique suggests the \right" scale at which the given da...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 5 شماره
صفحات -
تاریخ انتشار 1996